
Automated Testing
Understanding, designing, and setting up
an effective automated testing strategy

Table of Contents

Abstract..

Introduction...

Background..

Challenges & Solutions..

Extended Example..

Conclusion..

References..

02

03

04

05

09

16

17

http://www.getpostman.com

2

Abstract

Progress in automation is causing a shift left in testing behavior. Shifting testing to earlier

and often in the software lifecycle is a direct response to the lag time that now exists

between development and testing. Developers and engineers are using automated tests

to bridge this gap, reduce test development time, and ultimately save resources.

Transitioning from manual to automated testing requires a shift in strategy and

in resources. However, the trajectory of testing is overwhelmingly leaning toward

automation (Bhamaret, Lalitkumar, and Motvelisky, Joel). Increased availability of

testing tools has allowed developers and engineers to speed-up testing cycles, scale-

up, and improve program quality. It is easier than before to leverage the benefits of

automated testing while continuing necessary manual testing at an overall lower cost.

This white paper addresses the background of manual and automated testing, discusses

the pros and cons of test automation, and highlights a few important considerations

for implementing automated testing. This paper also includes an extended example

of consumer-driven contract testing (CDC testing). This example will dive into how

automated testing is beneficial for software built with a microservices architecture.

As automated testing continues to shape software development, more and more

companies are investing in test automation strategies. Automated testing is equipping

developers with the tools to make higher quality, extensible products with longer

shelf-lives. Implementing automated testing provides a significant advantage to

software developers.

http://www.getpostman.com
http://qablog.practitest.com/wp-content/uploads/2017/03/State_of_testing_2017_final_report.pdf

3

Introduction

Today, top companies leverage automated testing to increase product longevity, reduce

costly and repetitive build-out, and improve iteration quality. This whitepaper will

provide a brief introduction to automated testing. It will also address the benefits and

limitations of automated testing and give an in-depth example of consumer-driven

contract testing.

What is Manual Testing?
Manual testing is generally executed by an individual or group of individuals who are

trained in QA testing. The goal of manual testing, like automated testing, is to find

errors in code, potential bugs, and to ensure performance. Any test can be manual, but

manual testing takes more time and money than automated testing long term. Manual

testing generally decreases return on investment (ROI) because it requires replicating

investments on the same tests over and over again. Automated testing does not cause

this issue because test suites can be saved, duplicated, and reused. The benefit of

manual testing is that it allows testers to execute certain types of tests that are either

impossible or very difficult to automate. Some common manual tests include ad hoc

testing, exploratory testing, and user interface testing (K. Elena, and Z. Maryana).

What is Automated Testing?
Automated tests are not run by humans (as you might have already guessed). They are,

however, set up by humans. Tests are automated by creating test suites that can run

again and again. Generally, these test suites are made up of a collection of individual

tests with specific boundaries. Each individual test can deliver one piece of information,

but when run together, will give you an overview of successful and failed tests. Many

types of tests can be automated, including unit tests, integration tests, end-to-end tests,

regression tests, and mock tests. The process of automated testing is more efficient in

the long run, but can take time to strategize and set up.

Automated tests suites focus on repeatable processes with known results. For example

A+B=C should always be the case when the variable is D. Using test automation to

identify known risks decreases time spent on monotonous tests and frees up time for

developers to perform other manual tests like exploratory testing. Exploratory testing

is designed to identify and prevent potential risks rather than to confirm or deny known

risks. Your test suites can be easily maintained if you include exploratory testing and

other manual tests in with your automated workflow. This allows you to not only test

for the expected, but keep a sharp eye on the unexpected. In this way, implementing

automated tests extends all of your testing capabilities - manual and automated.

MANUAL TESTING WORKFLOWS

The process of manual testing is

 involved and costly for all types of

developers and engineers. Some

typical manual testing workflows are

listed below.

•	Developers: Using requests and

history, developers continuously query

the service they are building. Then, they

must watch each response to verify that

the expected data is being received.

•	Test Engineers: With a service URL and

product documentation, test engineers

must manually test each program ca-

pability individually. They must update

the product documentation by hand as

they find and fix errors.

•	Systems Engineers: Systems engineers

query multiple integration points while

building an application delivery pipeline.

This means they must manually query

multiple integration points by hand

by following several documentation

sources. This process becomes more

complex as the number of services with

which they integrate increases.

TEST SUITES

Test Suites are made up of test cases.

Test cases are individual validations for

some software function. For example,

one test case might to ensure that your

API is pulling the correct data from

your database.

Test Suites organize groups of test cases

into categories. Generally, each function

of a program has many commands that

achieve the function. It is a good practice

to group test cases in categories. This

allows you to group, save, and re-run

common functionality tests whenever

you need to validate a certain function.

Test suites typically run in a series, one

after the other, so they become the basis

for many automated tests.

http://www.getpostman.com
https://rubygarage.org/blog/automated-and-manual-testing

4

Background

Not long ago, most tests were performed locally (on someone’s laptop). This meant that

they would replicate an ideal environment and run a set number of known requests on

an entirely complete product (known as an end-to-end test). This was common practice

because software wasn’t necessarily relying on micro-services or independent units of an

entire program (Sridharan, Cindy).

A more granular philosophy for testing is now the norm. Microservices must be tested

for functionality independently and with other services. One of the main reasons for

using microservices is that they can run independently, so one part breaking does not

necessarily mean that the whole program will break. A granular testing philosophy

helps ensure that microservices work independently before putting the whole system

together. This philosophy is also the foundation for consumer-driven contract tests,

which will be addressed in the extended example.

If you are working in software development, you may be aware of some of the

different forms of testing that take place during the development process (and in

post-production). Unit testing, integration testing, and end-to-end testing are the most

common types of automated software tests, and they each serve different purposes

(Colantonio, Joe).

Unit Testing
Just as the name implies, unit tests deal explicitly with testing the components that

make up an entire program. These units are fragments of a larger ecosystem that need

to be tested in isolation for code errors -- before adding other dependencies. Unit tests

verify that the smallest pieces of a program are functioning properly. For example,

when testing APIs, unit testing generally refers to verifying that a single HTTP request

is delivering the expected results. Unit tests are valuable because they are relatively

simple to build and run. They find bugs that would be more difficult to find once the

fragments are added to the rest of a program. You can think of unit tests as the first

step in a full testing strategy.

Integration Testing
Integration tests deal with two or more units at once. This ensures that the units of

your program are compatible together and functioning properly with dependencies.

Dependencies can either exist in your own software or in third-party tools like an

API access key or login credentials. Building an integration test is more complex than

building a unit test because it involves more moving parts. The benefit of integration

testing is that it allows you to take a systematic approach to testing units with other

MICROSERVICES

Microservices are small, independently

working units that can be stacked

to create a more complex program.

The trend of using microservices is

growing because they provide more

flexibility, improve stability, and allow

for greater scalability.

EXAMPLE

Let’s say you are testing a program that

sends you a Slack message with a list

of trending Twitter topics in a specific

location.

In order to unit test, you will need to test

each part of the program. You might

begin by testing the Twitter API with the

goal of ensuring that it will send your

request for trending topics and return

the correct information. Next, you might

do an integration test with the Twitter API

and the Slack API to make sure that the

Twitter API sends a list of trends to your

Slack address when requested. Lastly,

after making sure that your unit tests and

integration tests passed, you might test

the whole program with an end-to-end

test to see if any unexpected bugs come

up. This could include testing different

variables like location, different Slack

accounts, and different API keys, etc.

Learn more about Microservices

in our blog post »

Above, a network of connected

microservices makes one larger product.

http://www.getpostman.com
https://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16
https://www.getpostman.com/apps
http://blog.getpostman.com/2015/11/24/explore-and-prototype-microservices-with-postman-and-hivepod/
http://blog.getpostman.com/2015/11/24/explore-and-prototype-microservices-with-postman-and-hivepod/

5

units. If you test everything at once, it can be difficult to isolate issues. By testing a few

units at a time, you can easily identify the pieces that aren’t fitting together properly.

End-to-end Testing
End-to-end tests target a complete ecosystem (that is, your newly developed software and

all of its dependencies). End-to-end testing ensures that each use case for your software

delivers the expected results. In addition, these tests will verify that your software works

with different variables, networks, or operating systems, etc. These are complex tests to

create and run, but are important to the process of releasing new software.

Automated Testing Challenges and Solutions

Despite the many benefits of implementing an automated testing framework,

companies and individuals struggle to transition from manual to automated testing.

These difficulties vary from product to product, and depend on what goals you have

for testing. Below are a few of the most common questions and some suggestions for

answering them.

Which tests do I automate?
Not all tests can or should be automated. Investing in an automated test takes

resources, so it is important to be selective when deciding where to spend

those resources.

Test Frequency

Tests that are run frequently are great candidates for automation, as long as they

can be automated. Each time you run the same workflow, you are duplicating an

investment unnecessarily and lowering your ROI. On the other hand, tests that are

only run periodically do not necessarily need to be automated. Especially when you

are starting out with an automated testing practice, these infrequent tests should

not be the first priority.

Number of Configurations to Test

Some programs have multiple possible configurations like different networks,

operating systems, or device types. In manual testing, the same test would be

performed for each different configuration. With automated testing, you can

significantly reduce the time spent on testing by setting up a test to run against

multiple configurations one after the other. However, a program with just one or

two configurations would not necessarily be worth testing automatically.

http://www.getpostman.com

6

Quality Gate Testing

Running certain tests on every build is a great quality measure, especially when

releasing changes on high-traffic programs. Typically the rule is: any test that is

repeated frequently is worth automating. Many companies use automated testing to

ensure that tests like smoke tests, sanity tests, and regression tests are performed

before any major release.

Amount of Data

Inputting large amounts of data takes a long time. If you have a test that requires

inputting a ton of data, you can save your QA or DevOps engineer (or yourself) the

trouble and time by automating these types of tests.

Length of Test

Some tests can be very easy to perform, but just take a long time to get through.

These types of tests might be worth automating so you can run them during off hours,

without needing someone to actively initiative and monitor the test.

These characteristics can help you figure out whether or not to automate a test and can also

help you prioritize your tests. If you are new to test automation, it may be best to start by

automating a few tests and then move onto the next highest priorities.

What tool(s) should I use?
Not all tools are created equal. You can find many different tools by simply searching,

“automated testing.” However, some tools are specialized for one or a few types of

automated tests. Not every tool will give you the full testing capabilities that you are

looking for.

When you are looking for the best tool for your product, consider the following:

Compatibility

One of the first things to consider is whether or not a testing tool supports the coding

languages in your product. If you have multiple products in multiple languages, ideally

you can find a tool that supports a wide range of languages.

Product Characteristics

Your product may need to be tested in various browsers, on different device types, or

with other third-party scripts. Your tooling choice will depend on your product’s unique

characteristics. To ensure that your requirements can be met by a certain tool, check

the tooling documentation.

http://www.getpostman.com

7

Integration Capability

You may need more than one tool to set up complete automated testing on your

product. In that case, you will want to ensure that any tools you look into are capable of

integrating with each other and also with any internal tools you plan on using.

Budget

This is a somewhat obvious qualification, but still very important. A basic budget

for automated testing will include the cost of any paid tool, cost of employment for

developers or QA engineers, and cost for future test fixes and additions. There are

many free tools and free trials out there that can help you get the most out of your

budget, so it is worth it to research your options before investing in a costly automated

testing tool.

Testing community and resources

Resources and community support are invaluable tools for any testing engineer or

developer. The better the resources and community support are, the more effective

you can be with that particular testing tool. To gauge the quality of resources, you

can review the documentation for clarity, check any support boards and third-party

support threads (ie. on GitHub), and check the company website for how-to blog

posts, tutorial videos, etc.

Is automated testing worth the start-up cost?
Cost is a common concern with individuals and companies alike. Costs can come from

investing in new testing tools, time spent strategizing, or development time. Starting an

automated testing practice can be expensive. You’ll want to consider where you are as

a company or with your product. Larger companies can easily absorb costs and justify

long term benefits, but smaller companies, startups, and individuals are less likely to be

able to.

The best way to justify new costs is to measure effectiveness on a small scale. A

common way to measure automated test effectiveness is by calculating return on

investment (ROI). When beginning a transition to automated testing, it is important

to keep records of cost, time spent and saved, and number of employees using an

automated testing strategy so you can calculate and visualize the effectiveness of

your automated testing strategy. In general, when companies move from manual to

automated testing, measure and optimize their strategy, automated testing saves

money and time.

Testing takes about 50% of all development time (Damm et. al., 2005), so increasing

the efficiency of your testing strategy can save you a significant amount of money.

http://www.getpostman.com

8

Finding and fixing defects in software differs in cost depending on the stage of a program’s

development. According to testing expert Paul Grossman, finding and fixing a defect costs

about five times more after a product release than it does to fix a defect during development

(Paul Grossman, 2009). Automated testing can run repeatedly without taking extra developer

time. By implementing automated testing, bugs and defects can be caught much earlier in

development without taking extra time from developers.

How do I get started with automated testing?
We’ve considered which tests to automate, how to identify effective tools, and start up costs,

but how do you actually begin planning an automated test?

Automated testing requires a shift in testing strategy and a thorough plan with enough

flexibility and reliability to last over time. This is very different from the test-as-you-go

philosophy of manual testing.

When setting up a successful test suite, consider the following:

Purpose: There can be many different goals to testing like to find bugs, to ensure

usability with third party products (even if they break), to test the variables, etc.

Variables: Any program will have changing variables that may be dependant on some

database or that may change based on user, etc. Variables are always an important

piece of your program to test.

Limits: A test suite will usually have many tests that work together to deliver the

information you need. Each piece of the test suite will need to be limited to delivering a

specific piece of that knowledge. How will you define your testing blocks so they are as

informative as possible?

Assumptions: If your program has any dependencies like an excel database or a third-

party API, these should be recorded in a library so they can be tested and the library can

be updated and reused in future testing.

	

Extensibility: Programs change over time (if they’re any good), so any test suite you

design should be able to adjust for changes in a program, in a library, or in dependencies.

Once you lay out the details of what you have in your program and what you expect to get

out of your test, you are in a great position to begin building your test suite. While there

are many things to consider, the time and resource investment is well worth it if you create

successful, reusable, and flexible test suites.

http://www.getpostman.com

Consumer-Driven Contract Testing with Postman

9

In this section, we’ll address some of these missing links and see where
Postman fits in. Postman has a broad range of automated testing
capabilities. In our extended example, we’ll go through the process
of creating a consumer-driven contract test with Postman.

What is Consumer-Driven Contract Testing?
Consumer-driven contract testing occurs between two services that need to interact. The

two parties are generally considered a consumer (like an API client) and a provider (like an

authorization service). Contracts are written lists of dependencies between the consumer

and the provider. Based on these lists of dependencies, providers create test suites to run at

every new build. Testing at every build ensures product performance for consumers.

Joyce Lin, a developer advocate at Postman, explained CDC testing clearly in her blog

post, Acing Your APIs: What You Need to Know for Test Automation.

Consumer-Driven Contract Testing (CDC Testing) ensures that
your service doesn’t break when a service that you rely on is
updated. This type of contract testing requires the consumer
of the service to define the format of the expected responses,
including any validation tests. The provider must pass these tests
before releasing any updates to the service.

Implementing consumer-driven contract testing is a great way to maintain growing

microservices stacks. It prevents API discrepancies and ensures that services properly

function together. In addition to guiding development and testing, CDC testing helps

side-step the need for large-scale and complex integration testing.

http://www.getpostman.com
https://www.getpostman.com/apps

10

What are Contracts?
Documentation can be likened to a contract. Documentation typically lists available

endpoints, request data, expected response data, etc. A developer might look at

API documentation and create a product that depends on a certain command and

response pattern. However, documentation changes without signaling potential issues

to providers, unlike contracts.

A contract is a more explicit and formal way to communicate consumer dependencies

to a provider. When a contract is created, tests are created alongside. These tests are

created specifically to test consumer dependencies on provider services. This creates a

simple workflow. If a provider makes a change in their service, then they must run and

pass the contract tests before releasing any updates to their service. This ensures that

consumer products do not break.

In CDC tests, consumers define dependencies, which make up the contract, and providers

perform necessary tests to ensure that the contract is held up any time the service is updated.

Using Postman for Consumer-Driven Contract Testing
In a recent survey, Postman found that 52% of APIs are internal. Internal APIs

are generally used to create one larger, customer-facing product. With this kind of

microservice architecture happening at such a large scale, it is imperative to have

communication between microservices.

Postman has all the tools you need in place to start implementing contract testing in

your organization.

We provide a collaborative platform that allows you to automatically share your

Postman Collections and maintain a single source of truth with your other team

members. Collections are executable specifications of an API. You can run a collection

locally on your Postman app, on the command line, on CI systems using Newman, and

via the cloud using Monitors. Requests in your collection are executed sequentially.

These tools allow you to easily share and execute collaborative contract collections.

PASS

CONSUMERS DEPENDENCIES CONTRACT TESTS PROVIDER

PASS

PASS

http://www.getpostman.com
https://www.getpostman.com/infographics/postman-community-survey-2018.pdf
https://www.getpostman.com/docs/v6/postman/collection_runs/command_line_integration_with_newman
https://www.getpostman.com/docs/v6/postman/monitors/intro_monitors

11

The entries array contains an object for each log entry. Here’s what that should look like:

Now, let’s run through an example use case on how Postman’s features come together

to implement consumer-driven contracts.

Use Case: Log Retrieval Service
Let’s say we need to build a hypothetical service that returns a list of log entries from a

database. This service exposes one endpoint that returns latest five log entries with the

name of the service that created the entry, a timestamp, and a description string.

The endpoint resides at /api/v1/logs. Sending a GET request to this endpoint should

return JSON data in this structure:

WHAT IS POSTMAN?

Postman is the only complete API

development platform. Postman’s

built-in tools support every stage of the

API lifecycle. You can design and mock,

debug, automatically test, document,

monitor, and publish your APIs -- all from

one place.

You can access Postman through native

apps for MacOS, Windows, and Linux.

Postman’s complete API development

platform allows you to create requests,

build and manage collections, and govern

the lifecycle of your APIs.

Team Library

Collaboration

Team Library

Co
lla

bo
ra

tio
n

Automated
Testing

Debug

Design
& Mock

Publish

Monitor

Document
{
 “Count”: Number,
 “Entries”: Array[object]
}

{
 “serviceName”: String,
 “timestamp”: Number,
 “description”: String
}

1
2
3
4
5

1
2
3
4

Blueprint Collection
To begin, we need to create a blueprint collection. A blueprint collection lays out the API

structure. This is created by the provider of the service.

Sample blueprint collection

http://www.getpostman.com
https://www.getpostman.com/apps
https://www.getpostman.com/apps

12

Next, we need to add examples for the request. Examples allow such blueprint

collections to describe response data. They show up in Postman’s automatically generated

documentation.

Here is an example of the response data for the default output of this service:

{
 “count”: 5,
 “entries”: [
 {
 “serviceName”: “foo”,
 “timestamp”: 1540206226229,
 “description”: “Received foo request from user 100”
 },
 {
 “serviceName”: “bar”,
 “timestamp”: 1540206226121,
 “description”: “Sent email to user 99”
 },
 {
 “serviceName”: “foo”,
 “timestamp”: 154020622502,
 “description”: “Received foo request from user 10”
 },
 {
 “serviceName”: “baz”,
 “timestamp”: 1540206223230,
 “description”: “Activated user 101”
 },
 {
 “serviceName”: “bar”,
 “timestamp”: 1540206222126,
 “description”: “Error sending email to user 10”
 }
]
}

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

Each example has a name and specific request path. Here is how it looks in the

Postman app:

Adding example to sample blueprint collection’s request

http://www.getpostman.com
https://learning.getpostman.com/docs/postman/scripts/postman_sandbox/

13

With the example responses in place, Postman will automatically generate web-based

documentation for the blueprint.

Here is what Postman’s published documentation looks like:

Published documentation generated by Postman from the sample blueprint collection

Next, you will need to create a mock server in Postman based on this collection. The

example responses added in the request will be sent as part of the mock server response.

You can make requests to the mock server using the endpoint Postman generates for you

as a URL.

Note: If you are using a team workspace, all members can view the documentation,

comment on the documentation, and access the collection.

Making a request to https://<mock-server-id>.pstmn.io/api/v1/logs will return

the following response:

Response returned from mock server created from sample collection

http://www.getpostman.com

14

Writing Contract Collections
Consumers of a service can build contract collections based on a blueprint collection

and mock server. Postman tests allow you to assert on every aspect of the response,

 including response headers, body, and response time.

For this example, let’s assume there is only one consumer of this service. Our

contract collection example will have one request and it will assert only on the

response data structure.

Note: A real-world contract would assert on the data structure as well as the data

received in the response.

Consumer contract collection using tests to assert on response data

Below is an example of a test script that the contract collection can use to test the

data structure:

Note: It uses the tv4 library, which is included in the Postman Sandbox:

1
2
3
4
5
6
7
8
9

10

// Define the schema expected in response
var responseSchema = {
 “type”: “object”,
 “properties”: {
 “count”: {
 “type”: “number”
 },
 “entries”: {
 “type”: “array”,
 “items”: {

http://www.getpostman.com
https://learning.getpostman.com/docs/postman/scripts/postman_sandbox/

15

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

 “type”: “object”,
 “properties”: {
 “serverName”: {
 “type”: “string”
 },
 “timestamp”: {
 “type”: “number”
 },
 “description”: {
 “type”: “string”
 }
 }
 }
 }
 }
}
// Get response data as JSON
var jsonData = pm.response.json();
// Test for response data structure
pm.test(‘Ensure expected response structure’, function ()
{
 var validation = tv4.validate(jsonData,
responseSchema);
 pm.expect(validation).to.be.true;
});

The contract collection is published here. You can use the “Run in Postman” button to

load the collection in your Postman app and play around with the configurations.

Note the use of the {{url}} variable placeholder in the contract collection. When a service

is in its early phase, consumers can use the mock server URLs to make the requests.

When the service has been built, the environment variable can be switched to point to

a hosted instance of the service. This way, development of consumer applications or

services can happen in parallel.

Continuous Testing
Contracts need to be continuously tested to ensure validity over time. There are two ways

this can be achieved.

If you have an existing continuous integration system, you can export collection files and

environments from Postman and run them from the command-line using Newman.

Refer to Newman’s documentation for steps to set up continuous builds for Jenkins

and Travis CI. Your build pipelines can be triggered every time there is a change in the

specification or for every new version of the upstream service.

Organizing Contract Tests
Real-world tests have setup and teardown phases. Contract tests are no different. A

common use case for contract tests is to populate the system being tested with some

data, perform operations on it, then remove the test data.

http://www.getpostman.com
https://documenter.getpostman.com/view/4946945/RWgwQFWH
https://learning.getpostman.com/docs/postman/collection_runs/command_line_integration_with_newman/
https://learning.getpostman.com/docs/postman/collection_runs/integration_with_jenkins/
https://learning.getpostman.com/docs/postman/collection_runs/integration_with_travis/

16

A neat pattern of emulating this in Postman is to have a Setup folder as the first folder in

the collection and a Teardown folder as the last folder of your collection. All contract tests

can then be situated in between the Setup and Teardown folders. Postman runs collection

sequentially, so this will ensure that Postman will always run the requests in the Setup

folder first, then the contract tests, and will lastly run the requests in the Teardown folder.

We make use of this pattern when writing our own internal contracts:

Setup and Teardown folders in an actual

contract collection used by the Postman

engineering team.

Consumer-driven contracts

provide the surface area for

testing microservices and

negotiating changes. For even

more on testing, visit our

Learning Center.

Conclusion

Automated testing is shifting the landscape of software development. Test automation

allows for faster iterations, more reliable test results, and ultimately higher quality

products. There are many aspects to consider before and during the transition from

manual to automated testing. There is no catch-all method for testing. Manual testing is

necessary for qualitative results and for tests that require human verification. Investing in

the initial setup for automated testing can be time-consuming and costly.

When you strategically consider cost, time, test characteristics, etc., you can optimize

your testing tactics to be cost-effective and efficient. Creating a successful testing strategy

means utilizing both manual and automated testing to the fullest potential. Automated

testing tools are becoming more common and readily available.

http://www.getpostman.com
learning.getpostman.com/docs/postman/scripts/test_scripts/
learning.getpostman.com/docs/postman/scripts/test_scripts/

17

Building an automated testing suite saves a significant amount of company time and

money and improves overall ROI (Palamarchuk, Sofia). Setting up an automated test

involves more planning and up-front development time than manual testing. Once the

initial setup is complete, the result is that less planning and development will need to be

spent on testing in the future. Test automation offers greater scalability, saves time and

resources in the long run, and simplifies your workflow. Automated testing provides a

huge advantage for software developers.

References

1.	 Bhamaret, Lalitkumar, and Motvelisky, Joel. State of Testing: Report 2017. QA Intelligence, 2017, http://qablog.practitest.com/wp-content/up-
loads/2017/03/State_of_testing_2017_final_report.pdf

2.	 Colantonio, Joe. “Automation Testing Ultimate Guide (How, What, Why)?” Automation Awesomeness, https://www.joecolantonio.com/automa-
tion-testing-resources/

3.	 Damm, L-O. & Lundberg, L. & Olsson, D. (2005). Introducing Test Automation and Test-Driven Development: An Experience Report. Electronic Notes in
Theoretical Computer Science. https://core.ac.uk/download/pdf/39962016.pdf

4.	 Grossman, Paul (2009). Automated testing ROI: fact or fiction? HP Technosource. https://docplayer.net/20448512-Table-of-contents-automated-
testing-roi-fact-or-fiction-a-customer-s-perspective-what-real-qa-organizations-have-found.html

5.	 K., Elena, and Z., Maryana. “Pros and Cons of Automated and Manual Testing.” RubyGarage, https://rubygarage.org/blog/automated-and-manu-
al-testing

6.	 Palamarchuk, Sofia. “The True ROI of Test Automation.” Abstractaca, https://abstracta.us/blog/test-automation/the-true-roi-of-test-automation/
7.	 Sridharan, Cindy. “Testing Microservices, the sane way.” Medium, 30 Dec. 2017, https://medium.com/@copyconstruct/testing-microser-

vices-the-sane-way-9bb31d158c16

http://www.getpostman.com
https://abstracta.us/blog/test-automation/the-true-roi-of-test-automation/
http://qablog.practitest.com/wp-content/uploads/2017/03/State_of_testing_2017_final_report.pdf
http://qablog.practitest.com/wp-content/uploads/2017/03/State_of_testing_2017_final_report.pdf
http://www.joecolantonio.com/automation-testing-resources/
http://www.joecolantonio.com/automation-testing-resources/
https://core.ac.uk/download/pdf/39962016.pdf
https://docplayer.net/20448512-Table-of-contents-automated-testing-roi-fact-or-fiction-a-customer-s-perspective-what-real-qa-organizations-have-found.html
https://docplayer.net/20448512-Table-of-contents-automated-testing-roi-fact-or-fiction-a-customer-s-perspective-what-real-qa-organizations-have-found.html
http://rubygarage.org/blog/automated-and-manual-testing
http://rubygarage.org/blog/automated-and-manual-testing
https://abstracta.us/blog/test-automation/the-true-roi-of-test-automation/
http://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16
http://medium.com/@copyconstruct/testing-microservices-the-sane-way-9bb31d158c16

	Automated-testing-final-cover
	Automated-testing-whitepaper

