
The API-First
Transformation
Kin Lane
FOREWORD BY

Abhinav Asthana



Hello World 



The API-First  
Transformation



4

Kin Lane

FOREWORD BY

Abhinav Asthana

The API-First 
Transformation



5

Copyright ©2022 Kin Lane

All rights reserved. No part of this book may be reproduced in any form or by  
any electronic or mechanical means, including information storage and retrieval  
systems, without permission in writing from the publisher, except by reviewers,  
who may quote brief passages in a review.

ART DIRECTION

Shruthi Venkatesh 

Hardcover ISBN: 979-8-9869518-0-5
eBook ISBN: 979-8-9869518-1-2

PUBLISHED

Postman 
201 Mission Street
Suite 2375
San Francisco, CA 94105
+1 415 796 6470

www.postman.com

Adyen is a registered trademark of Adyen N.V. Amazon is a registered trademark of Amazon Technologies, Inc. 
American Airlines is a registered trademark of American Airlines, Inc. Android OS is a registered trademark of Google 
Inc. Apple iPhone is a registered trademark of Apple Inc. Common Object Request Broker Architecture (CORBA) is a 
registered trademark of Object Management Group, Inc. Domino’s Pizza is a registered trademark of Domino’s Pizza, 
Inc. DoorDash is a registered trademark of DoorDash, Inc. Drizly is a registered trademark of Drizly, Inc. Duke Energy  
is a registered trademark of Duke Energy Corporation. eBay is a registered trademark of eBay Inc. Euler Hermes is a 
registered trademark of Euler Hermes S.A. Facebook is a registered trademark of Meta Platforms, Inc. Fast Healthcare 
Interoperability Resources (FHIR) is a registered trademark of Health Level Seven International, Inc. FedEx is a 
registered trademark of Federal Express Corporation. Flickr is a registered trademark of Flickr, Inc. Forbes is a 
registered trademark of Forbes LLC. Ford is a registered trademark of Ford Motor Company. Formula One is a 
registered trademark of Formula One Licensing B.V. Free Law Project is a registered trademark of Free Law Project 
Non-Profit Corporation. General Data Protection Regulation (GDPR) is a registered trademark of IT Alliance Group, Inc. 
GitHub is a registered trademark of GitHub, Inc. Goldman Sachs is a registered trademark of Goldman, Sachs & Co. 
Google is a registered trademark of Google LLC. GraphQL is a registered trademark of LF Projects, LLC. GrubHub is  
a registered trademark of GrubHub Holdings Inc. HelloFresh is a registered trademark of HelloFresh SE. IBM is a 
registered trademark of International Business Machines Corporation. Instacart is a registered trademark of Maplebear 
Inc. Instagram is a registered trademark of Instagram, LLC. Lightspeed Venture Partners is a registered trademark of 
Lightspeed Management Company, L.L.C. Linux Foundation is a registered trademark of The Linux Foundation 
Non-Profit Corporation. Object Management Group (OMG) is a registered trademark of Object Management Group, 
Inc. Open Collective is a registered trademark of OpenCollective, Inc. PayPal is a registered trademark of PayPal, Inc. 
Postgres is a registered trademark of PostgreSQL Community Association of Canada Not-For-Profit Corporation. 
ProgrammableWeb is a registered trademark of John Musser. Salesforce is a registered trademark of salesforce.com, 
Inc. Samsung TV Plus is a registered trademark of Samsung Electronics Co., Ltd. SendGrid is a registered trademark  
of SendGrid, Inc. Shutterstock is a registered trademark of Shutterstock, Inc. Stripe is a registered trademark of Stripe, 
Inc. Tanzu is a registered trademark of VMware, Inc. Twilio is a registered trademark of Twilio Inc. Twitter is a 
registered trademark of Twitter, Inc. Wells Fargo is a registered trademark of Wells Fargo & Company. Werner 
Enterprises is a registered trademark of Werner Enterprises, Inc. WhatsApp is a registered trademark of WhatsApp 
LLC. Windows is a registered trademark of Microsoft Corporation. Wix is a registered trademark of Wix.com LTD.  
Uber is a registered trademark of Uber Technologies, Inc.YouTube is a registered trademark of Google LLC. 



6

To John and Adam for lighting my API storytelling imagination with ProgrammableWeb. 
To Steve for funding APIStrat and API Evangelist for all the years. To my amazingly 
strong wife Audrey for enduring 12+ years of API blah blah blah while also teaching me 
the power of storytelling. To Abhinav, Ankit, and Abhijit for believing in my storytelling 
and providing me with a platform to bring my stories to life. To my Kaia Mhairi for 
ensuring I am still in the world to make all of this happen. And for Isaiah, we miss you kid.

01
02
03



7

01
02
03

Contents



8

Foreword 13

Author’s Note  15

Introduction 17

PART 01  -  STRATEGY 

CHAPTER 1  -  THE EVOLUTION OF APIS 19

1.1 A Growing Market Opportunity 21

1.2 Deconstructing the API 22

1.3 Early Seeds 24

1.4 APIs in Commerce and Social Media  25

1.5 Amazon: The API Moves to the Cloud  28

CHAPTER 2  -  APIS AT SCALE: FROM MOBILE DEVICES TO THE IOT 31

2.1 Going Mobile 31

2.2 The API Economy 33

2.3 APIs Power the Internet of Things (IoT) 34

CHAPTER 3  -  CHARTING API GROWTH 38

3.1 A Pandemic Accelerates Adoption 38

3.2 The Global Growth of APIs 40

3.3 API Technologies 44

CHAPTER 4  -  MARKETING AND SELLING YOUR API PRODUCTS 46

4.1 Determining Your Sales and Marketing Needs 46

4.2 Reducing Friction for Your Customers 48

4.3 Effective Approaches to Marketing and Sales 48

4.4 Developing a Sales Strategy 49 

4.5 A Built-In Feedback Loop 51



9

CHAPTER 5  -  PLATFORMS AND DIGITAL RESOURCES 52

5.1 API Platforms 54

5.2 Defining your Enterprise Digital Resources 54

5.3 Making Your Infrastructure and Applications Composable 56

CHAPTER 6  -  MAXIMIZING VALUE FOR USERS 58

6.1 Treating Your APIs as Products 58

6.2 Identifying Outcomes: Jobs Theory and Interoperability 61

6.3 Delivering Meaningful Experiences  63

6.4 Investing in Low-Code and No-Code Opportunities 66

CHAPTER 7  -  THE API-FIRST DIFFERENCE 68

7.1 The API-First Journey 68

7.2 Why Becoming API-First Matters 69

7.3 Where Are You in Your API-First Journey? 73

7.4 Gauging Results 78

PART 02  -  TECHNOLOGY AND GOVERNANCE

CHAPTER 8  -  THE ESSENTIAL ELEMENTS OF API TECHNOLOGY 81

8.1 API Infrastructure 81

8.2 Internet Protocols, API Contracts, and Specifications 82

8.3 Using OpenAPI as your Standard Digital Business Contract 86

8.4 Mapping the Event-Driven Enterprise with AsyncAPI 88

8.5 Modeling and Validating Your Business Using JSON Schema 89

8.6 Internal Operational Contracts as Protocol Buffers 90

8.7 Making the API Lifecycle Executable Using Collections 92

8.8 Embracing your Legacy Web Services Using WSDL 93

8.9 Investing in the Architecture your Operations Need 94



10

CHAPTER 9  -  PATTERNS AND PROTOCOLS 96

9.1 The Most Important API Patterns  96

9.2 Using REST and GraphQL 98

9.3 Using WebSockets and gRPC APIs 100

9.4 Decomposing and Decoupling with Microservices 103

9.5 Making Operations More Event-Driven with Webhooks 104

9.6 Synchronous and Asynchronous APIs 107

CHAPTER 10  -  MANAGING YOUR APIS 112

10.1 Optimizing API Infrastructure Management 112

10.2 Using APIs Across Many Types of Applications 115

10.3 Strengthening your Partnerships with APIs 117

10.4 Leveraging APIs for Integrations 119

10.5 Reshaping your Legacy Systems with APIs 121

10.6 Open Source Solutions 124

10.7 Managing API Access 126

CHAPTER 11  -  DEVELOPING GOVERNANCE AND STANDARDS 128

11.1 Managing API Governance 128

11.2 Improving Organization with Domain-Driven Design (DDD) 132

11.3 Providing Guidelines and Guardrails for Your Teams 135

11.4 Defining and Communicating API Maturity  136

11.5 The Importance of Standards across the API Life Cycle 136

11.6 Internet and Industry Standards 139

11.7 Organizing Your Standards 140

11.8 Applying Rules to API Operations 143

11.9 Embracing Federation 145



11

CHAPTER 12  -  REVIEWING YOUR DESIGN AND GOVERNANCE 147

12.1 Design and Quality Reviews  147

12.2 Security Fundamentals and Reviews  150

12.3 What Good Governance Looks Like  158

 

PART 03  -  OPERATIONS

CHAPTER 13  -  ALIGNMENT AND LIFE CYCLES 162

13.1 Aligning Your Organization for APIs 164

13.2 The Producer Life Cycle 175

13.3 The Consumer Life Cycle 182

13.4 Moving Past Tribal and Vendor Dogma 184

CHAPTER 14  -  APPROACHES TO CREATING APIS 184

14.1 Making Decisions: Lead with Design, Code, Prototype, or Proxy?  184

14.2 Life Cycle Essentials 189

14.3 Maximizing Your Infrastructure Investment 190

CHAPTER 15  -  WORKSPACES, SOURCE CONTROL, AND CI/CD 192

15.1 Workspaces  192

15.2 Source Control and CI/CD 195

CHAPTER 16  -  GATEWAYS, PERFORMANCE, AND SCALING 198

16.1 API Gateways 198

16.2 Application Performance Management (APM) 202

16.3 Embracing the Benefits of Cloud-Native 203

16.4 Deploying APIs Across Regions 206

16.5 Change Management 208

16.6 API Portals 211



12

CHAPTER 17  -  ROLES, DISCOVERABILITY, AND ANALYTICS 213

17.1 Roles 213

17.2 Making Your Operations Discoverable 216

17.3 Analytics and Reporting 218

CHAPTER 18  -  IMPROVING PRODUCTIVITY, QUALITY, AND SECURITY 220

18.1 Productivity  220

18.2 Improving API Quality 223

18.3 Shifting Left - Securing Your APIs Early 224

18.4 Platform-Level Automation 226

CHAPTER 19  -  EDUCATING YOUR TEAMS 228

19.1 Keeping Up with Training  228

CHAPTER 20  -  REGULATIONS AND PRIVACY 232

20.1 Compliance Regulations 232

20.2 Privacy 235

CHAPTER 21  -  INTEROPERABILITY AND AUTOMATION 239

21.1 The Benefits of Interoperability 239

21.2 Keeping Up with Automation 242

YOUR API OPERATIONS: THE 30,000-FOOT VIEW 244

CLOSING THOUGHTS 246



13

Foreword

Kin and I met almost a decade ago. Postman, the company I co-founded later, was just 
getting off the ground as a side project and as I learnt more about APIs, it was hard to 
escape Kin’s writings on his blog - apievangelist.com. I started seeing references to the 
API Evangelist at conferences, in blog posts, and in the press. Soon after we were 
funded as a seed-stage startup, one of our investors sent a version of one of Kin’s blog 
posts wanting to discuss how we think about the API landscape. I knew I had to get to 
know Kin!

Our early conversations taught me a lot and we stayed in touch. APIs were evolving at a 
rapid pace and as Postman grew to be more widely adopted, my belief strengthened 
that APIs were going to be the central building blocks of modern technology. However, 
explaining the value of APIs to technology leaders and business leaders was a 
challenge we started noticing. Both sides of the equation have to work together for 
successful API programs. Kin and I spoke about this often, and soon an opportunity 
opened up for us to work together formally with him joining us as our Chief Evangelist.

Kin’s work at Postman expanded to talk to hundreds of customers, technology 
leadership, business leadership, ecosystem vendors, and the press. Kin is supported by 
an amazing team of technologists who contribute to several open-source initiatives like 
OpenAPI, GraphQL, JSON Schema, AsyncAPI, and many other areas. Kin’s team also 
works with the developer community at large and helps them through tutorials, 
conference talks, and educational material.

A distillation of those lessons learnt is now in your hands in the form of this book. The 
common thread that you will find in the book is the notion of APIs being a strategic 
asset that the most forward-looking companies care about. They build and use APIs 
through a conscious strategy rather than just middleware, glue, or worse an 
afterthought. Well-built APIs are the foundation of strong technological powers, 
revenue drivers, and market cap multipliers. They also lead to happier and more 
productive development teams.



14

Building them and managing APIs well is an organizational skill that needs to be 
acquired and honed over time. While there are a lot of resources on the technology side, 
this book will help you see APIs from many perspectives. It’ll also give you blueprints 
and ideas to help you think through your organization’s API strategy. If you don’t have 
one, this book will guide you in creating one.

That said, there is no substitute for actually executing a strategy. At Postman, we have 
used API-first strategies ourselves to help us scale from a 3-person startup to now 
what has become one of the fastest growing software companies in the world. I can 
attest first-hand to the advice that is shared in the book.

Abhinav Asthana 
CEO and Co-founder, Postman



15

Author’s Note

I’m Kin Lane. If you’ve ever met me at a technology conference—or if you follow my API 
Evangelist blog or listen to my weekly Breaking Changes podcast, where I discuss the 
latest API topics with business and technology leaders across the globe—then you 
know I’m passionate about APIs. For reasons that will quickly become apparent as you 
read this book, I believe APIs are the single most important technological innovation in 
the world today.

I have spent the last twelve years evangelizing to companies, institutions, and 
government agencies about why APIs matter. In 2013, I served as a Presidential 
Innovation Fellow for the Obama administration, where I worked as part of the open 
data effort and assisted the Department of Veterans Affairs in streamlining their partner 
relations using APIs.

Today, I apply my knowledge as Chief Evangelist at Postman, where I talk with some of 
our largest enterprise clients about their API journeys. I also manage developer relations, 
lifecycle and governance, specifications and tooling, and our data, standards, and 
intelligence teams.

When my CEO Abhinav Asthana asked me to write a book combining my expertise with 
lessons I’ve learned from the customers and leaders I’ve interviewed on Breaking 
Changes, I leapt at the chance. While my work informs the road map for the Postman 
API platform, this is not a book about Postman. Instead, it is about stories I am hearing 
from companies that have shaped our technology and business landscape for the last 
20 years–and are now defining its contours for the next 20. By seeing APIs from multiple 
perspectives, leaders in every industry will start to understand the unique benefits this 
technology has to offer.

Understanding APIs is powerful because they are the engine driving the great digital 
transformation within our companies and all around us. We can either sit back and allow 
this engine to pull us where it will, or we can learn to understand what it is, how it works, 
and how to direct its energy to our own advantage.



16

This book is for business leaders who choose the latter course—those who realize that 
the way information is created, distributed, and consumed will define tomorrow’s 
organizations. If you learn how to execute APIs well, they will serve as a bulwark for  
your company and a source of value for years to come.

In this book, you will find the building blocks for constructing a successful future  
with APIs.



17

Introduction: The API Opportunity

Every day, we are exposed to a digital firehose of information shaping our decisions. 
The shift to all things digital has been 50 years in the making, and the technologies 
precipitating it have taken many twists and turns along the way. But if you examine 
them closely, you will find that beneath the surface, they all have one thing in  
common—APIs.

APIs are the connectors that give meaning to long strings of ones and zeroes, 
translating disparate applications into products and services that bring value and 
convenience to customers—and, sometimes, riches to their creators. Consider these 
examples, a few of many:

• According to Fortune Business Insights, the global smartphone market size is 
projected to reach USD 792.51 billion in 2029, at a CAGR of 7.3%.1

• eBay’s Buy APIs, which allows customers to place orders on third-party shopping 
sites, have generated 5 billion dollars of revenue.2

•  Amazon Web Services generated $62.2 billion in 2021.3

All of these results were achieved through the skillful use of API technology. And the 
opportunities for creating value are by no means over—in fact, the API economy is still 
in the early stages.

Every organization stands to gain value from APIs, whether that means making internal 
processes more efficient, creating more innovative products, delivering better customer 
experiences, or all of the above. Only you can decide how to use the technology to  
your best advantage. What this book will do is equip you with the tools you need to  
get it done.

While we will delve into technical concepts, the book is certainly not written solely for 



18

technology experts. We will purposely provide high-level information at every turn to 
help you fly over the dogma, tribalism, and vendor influence that often dominates API 
discussions. Neither will we dwell on any single technology or stage in the API life cycle. 
As a business leader, you need a broad perspective to make the right decisions for your 
company.

Despite what you frequently hear across the technology sector, there is no single 
strategy, technology, or operational approach to “doing APIs.’’ Managing APIs well 
means ensuring your teams are equipped, educated, and incentivized to address the 
needs of your specific domain. While we have strong opinions on a handful of topics, 
such as governance and the API life cycle, our goal is not to convince you that we’re 
right but to give you the ability to design solutions that meet your organization’s needs.

The book is organized into three sections, which will help you:

• Create your API strategy,

• Assemble the right technology for your purposes, and

• Put the solutions to work in your operations.

The book is meant to be read, scanned, and picked up again after you have researched 
your design plans and bounced ideas off your teams. Information is often presented in 
easily-digestible, itemized lists that you can refer to again and again.

You will also find detailed descriptions of challenges and solutions, as well as 
references, guides, and other tools to help you plan the work you have ahead. And the 
narrative is interspersed throughout with real-life stories from top businesses and 
technology leaders, showing you how to apply their lessons to your own business, no 
matter what industry you are in.

Despite its comprehensiveness, this book is not—and cannot be—a custom blueprint 
for your organization’s API-first transformation. Only you can create that. Our goal is to 
arm you with knowledge and provide hundreds of ideas and examples to inspire you as 
you carve your own path in this promising, wide-open frontier.

NOTES

1 “Smartphone Market Worth USD 792.51 Billion in 2029 | 7.3% CAGR,” Global Newswire, 2022.

2 “How Ebay’s Buy APIs Hit $5 Billion in Gross Merchandise Bought,” eBay blog, 2021.

3 Amazon Reveals Its Most Profitable Business, Forbes contributor blog, 2022.



19

01Strategy



20



21Chapter 1 | The Evolution of APIs

APIs are not new. They have been taking root for the last 50 years, but the evolution of 
business technology over the past two decades has created an unprecedented 
opportunity for them to dominate industries and create entirely new dimensions of 
trade. From the cloud to the gig economy, the internet is changing how we live and 
conduct business, with one common property across everything–APIs. 

1.1 A Growing Market Opportunity
It took the last 30 years of the 20th century for the foundation of the digital economy to 
be laid. While we’ve seen some very significant shifts in business processes in the last 
20 years—the introduction of the cloud and the gig economy, for example—this is just 
the start. Now that all of our digital resources, capabilities, and experiences can be 
defined as simple, scalable, synchronous, and asynchronous APIs, the future becomes 
more interesting, but also more volatile and competitive.

The growth of APIs, the expanding number of people working with them, and their 
reach across almost every industry reveal the scope of the opportunity. This isn’t just 
about publishing the right set of APIs, it is about having the enterprise muscles to do 
APIs better than anyone else. This opportunity does not mean “Let’s set up the right 

01
The Evolution of APIs



22 Part 01 | Strategy

APIs and we are done.” It means honing the velocity, quality, and consistency of how 
your organization delivers and iterates upon your APIs.

Technology, business, and politics
Because APIs were born in the technology realm, it can be easy to view them through a 
purely technical lens. It is also easy to see everything behind or in front of the APIs. But 
in reality, APIs are the technical, business, and political control valve for everything 
happening in the world now. This isn’t hyperbole. APIs have been silently delivering 
every digital shift in the last 20 years, and while many have tuned into this reality over 
the last decade, most still see APIs as just a technical feat.

The business of APIs is how Amazon Web Services is becoming a greater revenue 
engine than Amazon proper. The politics of APIs is how Facebook was able to dominate 
social media with its Instagram and WhatsApp acquisitions. The API-first transformation 
isn’t just about doing APIs, it is about doing them well and learning how to wield them in 
support of your business vision, understanding the politics of your industry, or creating 
entirely new categories.

Every enterprise today is doing APIs, but most of them aren’t doing them well. They lack 
a formal strategy for how and why their teams are doing APIs. While you can study API 
pioneers like Stripe and Twilio for planning your API strategy, it is better to go all-in on 
your own API-first transformation and develop your organizational muscle for reliably 
delivering internal and external APIs. That is what will help prepare your company for 
the future.

1.2 Deconstructing the API
To understand the market opportunity, it helps to understand what an API is and why 
being API-first matters. In an internet-connected world, desktop, web, mobile, and 
device applications are designed for humans to use. APIs, on the other hand, are 
designed for systems, applications, and integrations to use. Websites and APIs both do 
the same things, such as return data, content, images, videos, and put algorithms to 
work. The only difference is that APIs don’t return all the details needed to make things 
look pretty to the human eye—you only get the raw data and other machine-readable 
information needed to make the resources behind the scenes work.

What are APIs?
Let’s break down what an API is before we explore what they are capable of, learning a 
bit more about how we interface with them to programmatically apply digital resources 
and capabilities.



23Chapter 1 | The Evolution of APIs

(A)pplication - You are “applying” something digital, often on a desktop, web, 
or mobile device, by connecting it to the Internet. Applications bring the web 
into our homes, workplaces, cars, and the public sphere.

(P)rogramming - Programming means allowing for something to be 
programmed, executed, and automated, making something that is repeatable 
and easy to use in software; allowing our physical and online world to be 
automated to do the things we can’t or don’t want to do.

(I)nterface - An interface is the point where two entities meet and interact, 
enabling communication between two systems.You apply digital resources, 
capabilities, and networking through servers to link to common, everyday 
objects, allowing the world around us to interact with us.

Application Programming Interfaces–APIs–are how you standardize, automate, and 
apply the digital resources and capabilities defining how the digital world works in the 
21st century.

How to think about APIs
When learning about abstract digital concepts, it helps to lean on real-world analogies. 
Here are two ways we like to help introduce people to APIs

Restaurant Menu - APIs have been compared to a restaurant menu, providing 
you a list of what is available and a set of instructions for ordering the items 
you want.

Utilities - APIs are often compared to your electricity, telephone, and plumbing 
systems, but their use extends to an endless mix of digital resources and 
capabilities that you access via digital interfaces.

Every digital resource, capability, and experience you encounter through your computer 
and mobile phone is API-driven. APIs define the raw digital resources your business 
produces and depends upon. Being able to produce and consume APIs effectively 
enables business to get done. 

Your enterprise is increasingly defined by the control you have over your digital 
operations, and APIs define what you are capable of as an organization. Ultimately, it is 
up to you to define what APIs mean for your organization and the impact they will have 
on your industry.



24 Part 01 | Strategy

1.3 Early Seeds 
APIs emerged in the earliest days of digital computing back in the 1950s, later evolving 
to meet the needs of a variety of business sectors.
  
The computer and network origins of APIs began with these investments by the U.S. 
military, universities, and industries: 

Sage - In 1954, the Semi-Automatic Ground Environment (SAGE) began its 
six-year development to be used as an early warning air defense system.

Saber - In 1964, IBM built upon SAGE to develop Semi-Automatic  
Business Research Environment (SABRE), an air travel reservation system  
for American Airlines. 

Arpanet - The early stages of the Advanced Research Projects Agency 
Network (ARPANET) began in 1966—planting the seeds for what we now know 
as the Internet.

Laying the foundation
Networks opened the opportunity for information to be shared across multiple physical 
locations.

FTP - In 1971, an MIT student named Abhay Bhushan published RFC 114 with 
the original specification for the File Transfer Protocol (FTP). to transfer files 
between two computers.

EDI - In the 1960s, electronic data interchange (EDI) was introduced to 
manage shipment supply chains in the U.S. Army by digitizing physical 
shipping manifests.

Creating a business model
Over the years we realized we needed more structured approaches to exchanging 
business information, and began using networks that were rapidly becoming what we 
now know as the internet.

Corba - In 1991, the Object Management Group (OMG) introduced the 
Common Object Request Broker Architecture (CORBA) allowing applications to 
communicate using APIs.



25Chapter 1 | The Evolution of APIs

SOA - In 1998, the idea of service-oriented architecture (SOA) emerged to 
provide more structured approaches to transmitting business data between 
networked servers.

As the web emerged, industry forces came together to formalize XML specifications in 
service of an SOA vision for the industry. But a simpler, lower-cost, and increasingly 
ubiquitous web would provide a much more powerful approach for delivering our digital 
resources and capabilities.

While taking shape for several decades, modern web APIs began to emerge in their 
current form during the e-commerce and social networking revolution of the early 21st 
century. They were pushing what was possible when it comes to buying and selling in 
the digital world, but also realizing that consumers are very social creatures, and we’d 
want to bring our friends, family, and followers along for the ride.

1.4 APIs in Commerce and Social Media 
APIs in commerce
Early web APIs escaped from the controlled service-oriented architecture (SOA) 
experiment in the enterprise and began to be applied to sales, products, affiliates, 
auctions, and the other expanding areas of the e-commerce shift.

Salesforce - From day one, Salesforce had a crude set of XML over HTTP web 
APIs to help the new startup compete against established thousand-pound 
gorillas, changing the conversation around how we manage our business 
relationships.

Amazon - The commerce powerhouse was using APIs to expand its network 
of sellers via affiliate marketing networks, but would forever change how we 
do business as part of its own API-first transformation, which resulted in what 
we now know as Amazon Web Services.

eBay - eBay saw early on the potential of APIs to transform the auction 
business. It also saw the value of ongoing investment in API-first 
transformation, helping the organization evolve beyond auctions to become 
the commerce giant it is today.

APIs in social media
The digital experience was rapidly becoming a social affair, with images, links, and other 
digital resources becoming more shareable via APIs. APIs were also expanded to define 
our profiles, connections, and the networks where we share these images and links.



26 Part 01 | Strategy

Flickr - The image platform saw the potential of APIs for making images 
available across the fast-growing world of blogging. It also saw early on how 
APIs enabled the next generation of business development through self-
service offerings.

Facebook - The top social network platform has leveraged its original platform 
to build out a global platform of human interaction, gaining a competitive edge 
by featuring images with Instagram and messaging with WhatsApp.

Twitter - The entire Twitter empire was built in its API community. When the 
company began, it was a simple interface. Once the API was released, we got 
a mobile application, buttons, widgets, and everything else that has helped the 
network grow.

Commerce plus social media would provide the rich substrate we would need to begin 
building the new digital economy, but the system was missing other essential concepts 
needed to take us into the future. Selling products and connecting people were 
powerful uses of the web. Later, APIs would demonstrate the power of reducing 
common digital objects into API commodities.

Web APIs were increasingly used for industrial-grade purposes, making common 
building blocks of information technology (IT) available as simple XML or JSON APIs. 
APIs further commoditized essential technical resources for businesses, shifting how 
we deploy and pay for our IT infrastructure while making it more elastic and scalable to 
support the future of the business.

As the web economy was picking up momentum, the foundation was being laid for a 
new economy, setting the stage for a transformative moment in business that we call 
the cloud.

EXPERT PERSPECTIVE

eBay responds to a changing 
commerce landscape

eBay was one of the first three web API 
pioneers. Alongside Salesforce and Amazon, 
eBay saw the potential of exposing XML APIs 
using the web early on. After sitting down with 
Tanya Vlahovic from eBay, it soon became clear 

Tanya Vlahovic



27Chapter 1 | The Evolution of APIs

to me that the company didn’t just dominate world auctions and commerce with 
APIs early in this century–it has continued to double down and invest in its 
API-first transformation.

At the heart of the eBay strategy is an OpenAPI, contract-driven approach to 
designing and operating APIs. eBay is using OpenAPI because it keeps 
documentation up-to-date, generating code libraries and other developer 
essentials using machine-readable specifications. eBay uses OpenAPI as the 
default contract for its relationship with its massive developer ecosystem, but 
the company is also rapidly expanding to use AsyncAPI as well.

You can see the API-first muscles eBay has developed over the last few years, 
not just in the number of APIs but in the pace of change evident in the 
company’s developer portal. You can see the contracts for their APIs alongside 
the documents, with YAML and JSON links for each version. To the untrained 
eye, this looks like just part of the developer experience. But in fact, it is a 
reflection of the velocity and agility the company achieved by standardizing 
how they do APIs and iterating on them quickly, building their API-first 
transformational muscles.

Another sign of eBay’s API-first muscles and confidence is how vocal the 
company is in telling the story of its journey. Tanya fully understands the 
importance of explaining how eBay does APIs and why they support open-
source API specifications like OpenAPI through the Linux Foundation. She also 
sees the impact her team members have when they speak at API conferences 
and write guest posts on top technology blogs. eBay is seen as a thought leader 
because of its active API storytelling.

While many enterprise organizations are just starting to invest in their API-first 
transformation and keeping API efforts focused on greenfield projects, eBay is 
generating billions of dollars by being API-first in the core aspects of its 
business. This API-first investment has allowed the company to make a 
significant contribution to revenue, but is also allowing it to innovate and remain 
agile. In a shifting commerce landscape, eBay has a unique view of its user and 
developer communities.



28 Part 01 | Strategy

1.5 Amazon: The API Moves to the Cloud 
In 2006, Amazon forever changed how we do business on the web with the release of 
Amazon Web Services, demonstrating that you can deploy global infrastructure using 
simple web APIs. Amazon S3 and EC2 not only changed how we would do business, 
they showed us the way forward for delivering the industrial-grade digital building 
blocks we needed with APIs.

S3 - Through its internalization of an API-first mentality, Amazon began to see 
their infrastructure in different ways, rethinking how they made storage 
available not just to scale their operations, but also by introducing Amazon 
Web Services, providing others with storage in the clouds.

EC2 - On the heels of storage in the clouds, Amazon Web Services (AWS) 
launched 4EC2 and elastic compute services for deploying different sizes of 
servers for hosting websites, APIs, and anything else you would need to host, 
paying only for what you used.

RDS - Continuing its expansion across essential IT infrastructure, AWS 
launched RDS, making common database platforms available as scalable APIs, 
providing MySQL, and eventually SQL Server, Postgres, and other fundamental 
data solutions to suit enterprise needs.

The AWS origin myth
According to a famous blog post by former Amazon engineer Steve Yegge, sometime 
around 2002, Amazon CEO Jeff Bezos issued a mandate to his still-young startup online 
retail business, changing not just the DNA of Amazon, but the way we would define our 
businesses in the years ahead. He stated:

• All teams will henceforth expose their data and functionality through service 
interfaces.

• Teams must communicate with each other through these interfaces.
• There will be no other form of inter-process communication allowed: no direct 

linking, no direct reads of another team’s data store, no shared-memory model, and 
no back-doors whatsoever. The only communication allowed is via service interface 
calls over the network.

• It doesn’t matter what technology they use.
• All service interfaces, without exception, must be designed from the ground up to 

be externalizable. That is to say, the team must plan and design to be able to expose 
the interface to developers in the outside world. No exceptions.



29Chapter 1 | The Evolution of APIs

The mandate closed with: Anyone who doesn’t do this will be fired. Thank you; have a 
nice day!

This landmark API-first mandate at Amazon would change the trajectory of the online 
retailer, but also set in motion another division that would eventually rival its core 
business, and change how companies operate across almost every sector.

Time has shown that the AWS origin story is more myth than reality, but it doesn’t 
matter. The AWS story is part of API folklore and is used to describe API-first 
transformations across almost every industry impacted by APIs today.

EXPERT PERSPECTIVE

API elasticity in the clouds
Arun Narayanaswamy, Director of Engineering 
at Amadeus Labs, joined us on Breaking 
Changes to help define the symbiotic 
relationship between APIs and the cloud. Arun 
helped articulate how cloud-native developed 
from cloud APIs and how it will help us deliver 
the next generation of API infrastructure, which 

will power the APIs to scale operations in the coming years.

I enjoyed learning about how cloud-native elasticity is one and the same with 
the agility and nimbleness introduced by being API-first. Being successful with 
the cloud is all about embracing the technology that makes it so powerful, and 
changing how you design, deliver, operate, scale, and evolve your infrastructure 
to take full advantage of its vertical and horizontal scalability. Cloud elasticity is 
the fabric of agility for operating and evolving your APIs, while also automating 
the infrastructure management underlying them.

Arun shared a very pragmatic view about the pros and cons of operating in the 
cloud while continuing to use your own on-premises data center. APIs enable 
you to integrate and migrate between the cloud and your on-premises 
environment. You can burst some operations to the cloud, or use the cloud only 
for the APIs you need to be the most elastic and scalable. Arun shared many 
reasons why you might eventually move beyond your data center–for example, 
to save on costs or operate in specific geographic regions. But he also noted 
that there are many security, legacy, and other considerations that may 

Arun Narayanaswamy



30 Part 01 | Strategy

suggest maintaining your data center makes sense. Either way, APIs are playing 
a significant role in shaping the balance between the on-premises environment 
and the cloud. Companies must consider what works best for their teams.

One realization I had in speaking with Arun about the cloud-native layer of 
operations is that the elastic infrastructure we are using behind our APIs not 
only allows us to automate our operations, but the billing system for our cloud 
infrastructure also has APIs. Cloud billing in APIs means we are able to test, 
configure, automate, and develop with greater awareness of what it costs to 
operate and scale our API infrastructure. Being able to automate and optimize 
cost management of our API infrastructure will be essential moving forward, 
and will allow us to optimize the balance between what we spend on our cloud 
infrastructure and the value we gain from the digital experiences we deliver 
with our APIs.

The introduction of the cloud was a milestone, showing us that APIs could be 
used to deliver global infrastructure. The next milestone is realizing the role of 
being cloud-native in our API-first transformation, and the symbiotic 
relationships our APIs have with the cloud.

NOTES

4  “The Secret to Amazon’s Success—Internal APIs,” API Evangelist blog, 2012.



31Chapter 2 | APIs at Scale

In the early days of the internet, you trudged to the office and logged onto a company 
PC–only to wrestle with applications that didn’t work very well or do very much. Now 
internet applications are part and parcel of our daily lives–we seamlessly float from one 
to another at work, at home, and everywhere in between.

How did we get here? It couldn’t have happened without APIs. This chapter will show 
how they vastly broadened the spread of digital resources, starting with the first mobile 
phone and culminating in today’s worldwide API economy.

2.1 Going Mobile 
Mobile phones have been around since the 20th century, but in 2007 everything 
changed with the introduction of the Apple iPhone. These new mobile devices 
popularized a new category of Internet-connected applications we carry in our pockets, 
requiring an entirely new set of digital resources and unlocking an unlimited realm of 
possibilities and internet-enabled digital capabilities.

02
APIs at Scale:  
From Mobile Devices  
to the IoT



32 Part 01 | Strategy

Devices
Many types of mobile devices and operating systems have emerged in the last couple 
of decades, but the iPhone from Apple and Android OS continue to dominate the mobile 
landscape.

iPhone - In 2007, Apple forever changed how we build software with the 
introduction of the iPhone, which also introduced the mobile application 
ecosystem we now take for granted. This new system changed the way 
businesses make digital resources available.

Android - Following Apple’s lead, in 2008, Google launched the Android mobile 
phone operating system. Eventually, this open-source software became the 
preferred OS for all handheld devices.

Digital resources
After early mobile application developers realized they could deliver digital resources 
on mobile applications, waves of API providers emerged to provide the essential digital 
resources to power the growing spectrum of mobile applications. A few of many 
examples include:

• Twilio (SMS) - Twilio made it simple to send and receive SMS messages using a 
well-defined web API.

• SendGrid (Email) - SendGrid puts enterprise-grade email within reach of fast-
growing startups.

• Stripe (Payments) - Stripe abstracted away the complexities of the payment system 
using APIs.

• Google Maps (Maps) - Google provided an API modeled after the hacks its own 
developers were using to create maps. 

• YouTube (Videos) - Youtube conquered the web using APIs to allow users to embed 
their videos.

• Instagram (Images) - Instagram used APIs to bring images to mobile devices.
• WhatsApp (Messaging) - WhatsApp modernized global communication using 

simple APIs.

Our personal and professional lives have become increasingly defined by the APIs that 
power our mobile applications, link us to global markets and news, and connect us to 
our family and friends. 



33Chapter 2 | APIs at Scale

2.2 The API Economy
The phrase “API economy” is often used to describe revenue opportunities accrued 
from making APIs available to third-party developers. While this represents one slice of 
the economy, there is a much larger opportunity for API providers ahead. We are seeing 
waves of startups and enterprises leveraging an API-first approach to provide what 
consumers are looking for, adding entirely new layers to the global economy.

Pioneering services enabled by APIs:
Ridesharing (ex., Uber) - APIs shook up the taxi industry, bringing new 
competition and forcing a very entrenched business sector to move forward 
with its own digital transformation. Uber’s aggressive API-driven approach 
connected drivers with people who needed rides worldwide.

Food delivery (ex.,GrubHub, DoorDash, Instacart) - Grubhub has put APIs to 
work to enable food and restaurant delivery via mobile phone.We now take 
these services for granted. APIs also gave Instacart the edge to make 
delivering groceries and other goods a professional gig.

Alcohol Delivery (ex., Drizly) - As with groceries and restaurant food, we now 
expect to have beer, wine, and spirits brought to our homes, shifting how we 
drink and socialize. 

All of these services had been tried at one time or another, but it took the perfect storm 
of APIs, the cloud, our mobile phones, and a pandemic-driven shift in priorities to make 
them a normal part of how we live.

EXPERT PERSPECTIVE

7-Eleven manages a crisis and 
transforms its business model by 
becoming API-first

For my Breaking Changes interview with Shadi 
Fallah of 7-Eleven, I expected a mildly 
interesting conversation about the importance 
of APIs in powering mobile applications. I’ll 
admit, I was biased out of the gate—to my mind, 
brick-and-mortar retail does not pencil out to a 
compelling API-first story.

Shadi Fallah



34 Part 01 | Strategy

2.3 APIs Power the Internet of Things (IoT)
Once it was discovered that simple, low-cost web APIs would work for low-latency 
mobile applications, developers began using the same approach for sending messages 
and data between common everyday objects. APIs began connecting devices across 
our personal and professional lives, bringing the online world into the physical world and 
helping to automate and optimize how we do business.

I was wrong. After talking with Shadi Fallah for five minutes, I realized that not 
only did she have a clear grasp of APIs’ capabilities, she had driven the retailer’s 
move from API-aware to API-first.

Shadi shared with me the battles she fought to convince her company’s leaders 
to begin an API-first journey. Like many traditional brick-and-mortar companies, 
7-Eleven was starting to invest more in technology with the eventual aim of 
becoming a technology company that sells retail goods. Nevertheless, its main 
focus was maintaining its dominance as a retail commerce leader. Under Shadi’s 
influence, the company switched to a platform approach to APIs, creating 
feedback loops with partners and consumers to help developers iterate faster 
to deliver the services people wanted.

Her timing couldn’t have been better. As the world began to shut down during 
the pandemic, neighborhoods across the U.S. depended on their local 
convenience stores to obtain essential goods. 7-Eleven needed to step up to 
meet this need, and to prepare for further changes after the pandemic ended. 
An API-first approach allowed 7-Eleven to remain competitive while rapidly 
innovating to respond to shoppers’ changing needs during this critical time.

But that’s not all. I asked Shadi how the company handled competition with all 
the new grocery and alcohol delivery startups. She said that becoming API-first 
allowed the company to turn these competitors into partners, helping 7-Eleven 
navigate the regulatory complexities of delivering alcohol in 50 states and 
adapt in other ways to the new realities of the pandemic.

By becoming API-first, 7-Eleven was able to accelerate its behind-the-scenes 
processes and realize its long-term vision of becoming a technology company. 
And having a responsive API platform ensures that the company will be 
prepared for the future, whatever it may bring.



35Chapter 2 | APIs at Scale

Cameras, sensors, drones,and other internet-connected devices are being applied 
across a range of industries, introducing “smart” capabilities into existing real-world 
processes and using APIs to send and receive data from the cloud. IoT startups are 
tapping into APIs to make cloud infrastructure available, and iPhone and Android mobile 
applications are using APIs to power everyday objects.

Manufacturing - APIs are reshaping the manufacturing supply chain, linking 
the physical world with the digital world and moving the factory floor into the 
clouds. Processes are becoming more elastic, helping manufacturers keep up 
s online and offline, no matter where business is happening.

Transportation - Our cars, roads, and transit systems are being transformed 
through APIs, changing our experience as we commute to work and take  
trips with the family. Our lives have become more connected, no matter  
where we are.

Energy - APIs are modernizing our energy grid, digitizing monitoring and other 
processes to deliver the energy we need to live to our homes and businesses. 

Retail - Commerce has moved online in the last 20 years, and the internet has 
crept into the physical, point-of-sale retail experience. Now the physical 
experience is becoming embedded with digital signage, sensors, cameras, 
and other connected devices to help shoppers find what they want and allow 
retailers to track their habits and purchases.

Cities - Our cities are being connected to the internet, bringing streets, parks, 
and public spaces online. Services can be improved by connecting the 
physical world to the cyber world, thanks to the APIs that stitch everything 
together.

Healthcare - Healthcare interoperability is a priority for hospitals, and public 
health agencies depend on APIs to bring the patient experience into the 
modern age, making sure healthcare records are available wherever they  
are needed. 

Agriculture - As we work to feed growing populations, the agriculture industry 
is undergoing a wave of digitization. Whether they are used by drones, 
sensors, tractors, or the food distribution network, APIs are being applied in 
new and compelling ways to change how we grow and supply food.

The exchange of data through internet-connected objects is transforming every business 
sector. The internet-connected landscape of the future will be defined by low-cost web 
infrastructure, which can be used to power more efficient and reliable APIs.



36 Part 01 | Strategy

EXPERT PERSPECTIVE

The automobile experience  
of tomorrow

John Musser, Director of Engineering at Ford 
Pro, recently talked with me on Breaking 
Changes about the importance of APIs in the 
automobile experience of tomorrow. Like many 
traditional companies, Ford is rapidly becoming 
a technology company that happens to produce 
physical products–which are increasingly 

connected to the internet through APIs. The automobile experience of 
tomorrow will completely re-evaluate our relationship with the road, the 
communities we drive through, and our personal relationship with the car, as 
well as address wider questions about transit and transportation.

Today’s automobile is defined by hundreds of sensors and internet-connected 
parts, from the engine to the entertainment system. APIs enable these sensors 
to work in concert, and they leverage the cloud to ensure that the automobile 
experience is not an isolated affair. From GPS systems to fuel gauges, the 
modern automobile is deploying APIs to make our vehicles smarter, more 
aware, and capable of doing more work for us. But this is just the beginning. As 
each API-driven automobile connects to an overall API-defined network of 
services, it is helping to deliver the transportation vision of  
the future.

Already, as we drive our vehicles, they are searching for the next gas station. 
While we are parked at work, APIs are making our trunks a delivery destination 
for the packages and groceries we’ll need when we’re ready to head home. APIs 
connect commercial fleets with the communities they serve, bringing greater 
efficiency to business operations. The API-driven experience of service 
providers, delivery drivers, and taxi cabs is perpetually optimized to improve 
customer service and help companies meet their business objectives, while 
also complying with local regulatory requirements.

At Ford, APIs aren’t just about automobiles. The technology defines the 
company’s core business model and supply chain, as well delivering a new 
driving experience for our personal and professional lives. I view Ford as a car 
company, but it was interesting to listen to the narrative around their API-first 

John Musser



37Chapter 2 | APIs at Scale

journey and their belief that they are a digital experience company, 
transcending the automobile experience as they move into bike sharing, 
energy, and everything else involved with transportation. 

It can be easy to focus on APi-first as a technology transformation, but as I’ve 
seen over and over in my conversations with enterprise leaders, its real value 
lies in what it does for businesses, industries, and the people they serve.



38 Part 01 | Strategy Chapter 3 | Charting API Growth

03
Charting API Growth
APIs are growing exponentially across every industry and enterprise. In fact, so many 
APIs are created to support desktop, web, mobile, and device applications that no 
single company knows where all its APIs are!

There are many ways to quantify the growth of APIs and explain how, where, and why 
they are used. But instead of throwing a bunch of statistics at you, we decided to 
convey the information visually, in charts and graphs, so you can see at a glance what 
the numbers mean.

The images that follow were generated from data obtained from 20 million Postman 
users and 30,000 respondents contacted for our 2022 State of the API report. 

3.1 A Pandemic Accelerates Adoption
The pandemic introduced changes in how we live, work, and operate our businesses. In 
the enterprise world, it accelerated the API-first transformation across almost every 
business sector as companies scrambled to make a sudden, wide-scale shift to digital 
operations. 



Chapter 8 | The Essential Elements of API Technology 39

Remote work
It has become clear that work processes implemented during the pandemic are here to 
stay and will need ongoing support.

One of the major changes is the demand for remote work. In the API economy, teams 
across generations believe they can accomplish everything they need to do from 
wherever they are.

Investing in the future
There is also an appetite across teams for more investment in work-related APIs, 
revealing that people have become more confident in the ability of APIs to help them 
accomplish their daily tasks more efficiently.

My organization will spend more 
time andresources on APIs: 53%

My organization will spend about the same
amount of time and resources on APIs: 36%

My organization will spend less 
time andresources on APIs: 11%

Very important

Moderately
important

Not important

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Global

US and Canada

Europe, Middle East, and Africa

Asia-Pacific Latin America



40 Part 01 | Strategy Chapter 3 | Charting API Growth

3.2 The Global Growth of APIs
More companies are developing, testing, and using APIs, as we can see from the 
expanding number of API collections across the globe. In addition, more types of 
workers are using APIs, especially in technology and business services, but in other 
sectors, such as finance and healthcare. 

Number of collections created
Collections have become a unit of representation for individual APIs, but also for the 
documentation, testing, and other essential elements of the API lifecycle. They reveal 
the executable, shareable, reusable representation of the business value defined by 
APIs. This global growth in collections reflects not only the greater number of APIs but, 
more importantly, the increase in productivity and the improvements in quality and 
governance required to reliably manage thousands of APIs.

NUMBER OF COLLECTIONS CREATED NUMBER OF REQUESTS CREATED

USA: 
5,426,426

India: 
4,669,393

China: 
2,650,422

Brazil: 
1,444,375

UK: 
977,788

Russia: 
800,647

France: 
748,791

Germany: 
714,916

Indonesia: 
613,921

Canada: 
591,357

USA: 
193,621,303

India: 
173,219,417

China: 
51,199,081

Brazil: 
39,524,329

UK: 
35,965,359

France: 
25,922,549

Russia: 
23,845,218

Indonesia: 
23,276,800

Germany: 
23,143,649

Canada: 
22,056,181

Top ten:
15,911,833

Rest of world:
10,261,827

Top ten:
528,867,434

Rest of world:
330,216,798



Chapter 8 | The Essential Elements of API Technology 41

APIs across industries
The API landscape has been expanding for the last decade, but in the past few years 
we’ve seen it shift to the mainstream. Of course, APIs are still dominant in the 
technology and business services sectors, but growth in financial services and 
healthcare has been exploding. Other industries, including education, retail, and even 
government agencies, are also getting into the API game.

Who works with APIs
APIs have evolved from something developers do to something that nearly all business 
stakeholders are actively involved in. This evolution is rapidly expanding the roles of 
people involved in the API lifecycle, bringing APIs out of the shadows of IT and into the 
business spotlight.

There has been a steady uptick in the types of employees working with APIs, beginning 
with logical groups like quality and security teams, but also more product managers, 
analysts, and even sales teams, all of whom are putting APIs to work as part of their 
core tasks.

Full stack developer
Backend developer

Quality engineer
Frontend developer

Director/manager
Technical/solutions architect

Student/professor
Integration engineer

DevOps engineer
Product manager

Data engineer/analyst
CTO

Mobile developer
Business Analyst

Support/customer success
CEO

Sales/solutions engineer
Security engineer
Network engineer

VP, Engineering
Other

0% 5% 10% 15% 20% 25%



42 Part 01 | Strategy Chapter 3 | Charting API Growth

Developers, teams, and APIs 
Companies are hiring more API developers, and teams are spending more time working 
with APIs, which have become a top priority at organizations. Everyone is beginning to 
think more about APIs and use them to navigate everyday tasks.

More developers
The roster of API developers is growing as companies bring in people with a range of 
skills to manage the technology.

Fewer than 10: 21%

10-25: 15%

26-50: 10%

51-100: 12%

101-250: 10%

251-500: 8%

More than 500: 25%

30%

25%

20%

15%

10%

5%

0%

Technology Business
IT services

Banking
Finance
Insurance

Healthcare Education Retail Gaming
Ent.
Media

Manufact-
uring

Auto-
motive

Government
Defense

OtherAdvertising
Marketing



Chapter 8 | The Essential Elements of API Technology 43

Public vs. private vs. partner
While there is a rapidly growing number of publicly available APIs, many companies still 
have a lot of anxiety about making APIs available to partners and third-party 
developers.

Development priorities
Teams are being told to focus on API quality, agility, reliability, and security, ensuring 
that digital resources meet business requirements.

More API users 
Teams are now spending a significant amount of their time working with APIs.

Quality of applications/
programs/services developed

Reliability of applications/
programs/services

Agility to respond 
to business needs

Security of applications 
and information

Speed of development

Reducing costs

Other

0% 10% 20% 30% 40% 50% 60% 70% 80%

Less than 10 hours a week: 33%

10 to 20 hours a week: 40%

More than 20 hours a week: 27%



44 Part 01 | Strategy Chapter 3 | Charting API Growth

But companies moving from an API-early stage to a more API-aware stage are gaining 
confidence in exposing their APIs as they learn more about the controls they have 
through API gateways and other aspects of API technology.

3.3 API Technologies
A clear set of patterns and protocols has emerged to help enterprise organizations 
deliver APIs. A number of contract formats are available to help define the details of the 
API landscape. You can see the growing opportunities that APIs present by looking at 
the growth in contract specification communities, as well as the use of patterns and 
protocols.

Patterns and protocols
REST continues to be the dominant architectural pattern, but webhooks, WebSockets, 
and other patterns are expanding across enterprises in many industries.

Private (used only by your team 
or your company): 58%

Partner (shared only with integration
partners): 27%

Public (openly available on the web): 
16%

Other

EDA

EDI

Server-Sent Events

AMQP

MQTT

gRPC

Websockets

GraphQL

SOAP

Webhooks

REST

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%



Chapter 8 | The Essential Elements of API Technology 45

The top contracts
JSON Schema continues to be the leading contract in use across organizations, with 
Swagger 2.0 and OpenAPI 3.0 leading the pack in defining API access to valuable 
resources.

Never heard of it Aware but don’t use it

Use it Use it and love it

WSDL

API Blueprint

Thrift

Avro

Protocol Buffers

AsyncAPI

RAML

GraphQL

JSON Schema

OpenAPI 3.x

Swagger 2.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%



46 Part 01 | Strategy Chapter 4 | Marketing and Selling Your API Products

04
Marketing and Selling 
Your API Products
APIs afford unique opportunities to help you understand your customers better, create 
marketing that speaks to their needs, and iterate your products to give them what they 
want when they want it. This chapter will show you step-by-step how to do it.

4.1 Determining Your Sales and 
Marketing Needs
Your sales and marketing in the API economy should center on staying change-resistant 
and future-proof. To sell effectively, you need a solid platform that will bolt onto your 
existing infrastructure and leverage the marketing and sales SaaS services you 
currently use. You need your digital factory floor and supply chain to instantly respond 
to your customers. Then you can turn your relationship with them into a real-time 
engine for understanding what they need and meeting their demands as quickly as 
possible.

Being API-first ensures that the feedback loop you have established with consumers 
provides the input to inform future sales and marketing campaigns. In other words, your 
marketing and resulting sales will inform the road map for your future APIs, as well as 



Chapter 8 | The Essential Elements of API Technology 47

improving sales and customer experiences today. So the sale isn’t just about what 
currently exists—it is also about perpetually delivering consumers value.

It can be easy to see your APIs in terms of the applications they power, but the real 
API-first opportunities lie in speaking to the business needs of the enterprise.

While there are many directions possible once you have begun your enterprise API 
journey, here are the top level areas to consider:

Industry - Consider what would happen if you expose your digital resources, 
capabilities, and experiences to external partners or even competitors, or how 
these APIs might be applied in industries that you do not already directly 
engage with.

Aggregation - The aggregation of data in finance, healthcare, and other top 
industries has proved to be a hot area of investment. These industries are 
leveraging APis to sell access to industry-wide global or regional data, making 
markets more visible and actionable.

Opportunities - Being API-first means that you can respond to new 
opportunities to sell your product in the moment, often before your 
competitors are able to respond. 

Reduce Costs - A successful way to position your API products is to show how 
they help companies reduce operating costs by transcending legacy 
technology and improving their business processes.

Switching Costs - Positioning your APIs to help reduce the friction of 
switching services and systems is a strong way to ensure that your APIs will 
speak to enterprise business goals. 

Rigid Systems - Make it easy for consumers to integrate your APIs. You should 
demonstrate how your APis help make consumers’ operations more flexible, 
composable, and less rigid and immovable.

Modernization - Your APIs should reflect what is coming next for consumers, 
speaking to the future, but also mapping to existing realities. Consumers need 
you to help them modernize the way they do business and respond to 
challenges. 

Innovation - APIs should be used to reduce team workloads, helping carve out 
more time for innovation. They provide micro opportunities for teams to do 
new things on top of their existing work in a worry-free environment.



48 Part 01 | Strategy Chapter 4 | Marketing and Selling Your API Products

4.2 Reducing Friction for Your Customers
Once you decouple your API development from supporting specific web or mobile 
applications, you can begin to see wider opportunities for introducing new API 
products. This allows you to better position and sell API products that speak to the 
business goals of your consumers, rather than just meeting specific technical 
requirements of a project or application. 

Do the work to make sure your API products reduce friction in existing business 
processes and make it easy for your consumers to modernize and innovate within their 
existing operations. Being API-first means you are able to rapidly deliver products that 
speak to real enterprise challenges, both in individual enterprises and across entire 
industries.

4.3 Effective Approaches to Marketing 
and Sales
As business continues to shift from physical to digital products, the way you approach 
sales and marketing is evolving. Alongside Cloud, SaaS, and other digital 
transformations, sales and marketing efforts for APIs are becoming more interactive, 
engaging, and immersive, speaking to the realities consumers face on a daily basis and 
ensuring that your products meet their needs.

Experiences - By making your API products available to consumers, you are 
selling digital experiences. By effectively providing reliable digital resources 
and capabilities, you can offer new experiences.

Engagement - Your sales and marketing efforts need to focus on micro 
engagement opportunities in alignment with your business goals, but they 
must also provide meaningful quantifiable engagement opportunities for 
customers using simple API products.

Community - API sales and marketing is about meeting consumers where they 
already are, connecting with consumers where they exist, and helping to 
augment existing business processes with new experiences.

Portal - Offering a portal window to consumers is a common way to make API 
products available securely through self-service. iPortals are a commonplace 
tool in API sales and marketing.



Chapter 8 | The Essential Elements of API Technology 49

Network - API networks are increasingly augmenting existing portal 
experiences, providing access for private, partner, and public API consumers 
not just to documentation, but to mocks, tests, monitors, and other resources.

Self-Service - Internal, partner, and public API consumers are increasingly 
expecting API products to be self-service. Providing frictionless self-service 
purchasing and engagement reduces bottlenecks across operations.

Discovery - The discoverability of API products is the foundation of sales and 
marketing. Being able to find and onboard with APIs is the top layer of your 
sales funnel, with APIs sealing the deal. 

Consumers - There are fewer “build-it-and-they-will-come” API opportunities 
today. The APIs making the most significant market impact are focused on the 
needs of a set of consumers, establishing a feedback loop with communities.

This approach to selling and marketing API products tends to focus on publicly available 
APIs, but some of these processes can work for reaching internal or partner consumers. 
This approach to sales and marketing isn’t meant to replace or threaten existing 
practices. APIs are about setting a digital baseline for offering products to consumers, 
with an emphasis on mapping to their existing experiences and world view.

To support the next generation of sales and marketing, enterprises will need to look at 
existing approaches to evangelism and developer relations, helping bring attention to 
available API products, but also advocating for consumers. It is up to leaders to find the 
right balance across sales, marketing, and developer relations–one that reflects the 
personality and tone your company wants to establish. Finding the right alignment 
between your own business objectives and those of your customers is key to success.

4.4 Developing a Sales Strategy
APIs excel at doing one thing and doing it well. They become much more difficult to sell 
if you try to make them be everything to everyone. While crafting a sales strategy for 
your API products, it helps to be as precise as you can about how you will be making 
your products available. The shape, size, and positioning of your API solutions will vary 
widely depending who you are targeting, and will dictate a great deal about your 
approach to selling.

Individuals - Consider whether your APIs will be targeting individual 
developers, speaking to what they are looking to accomplish both in their role 
and as part of their personal interests outside of work.



50 Part 01 | Strategy Chapter 4 | Marketing and Selling Your API Products

SMB - To right-size your sales strategy, ask whether your API products are 
focused on the needs of small to midsize businesses and startups. Augment 
your sales team with the right experience for your API sales and marketing.

Enterprise - Your enterprise API consumers will have an entirely different set 
of needs, requiring you to do your homework on the mix of infrastructure and 
developer talent across teams.

SaaS - The software-as-a-service market has been evolving and maturing 
over the last decade, introducing a significant but often specialized 
opportunity for delivering APIs.

Integrations - APIs aren’t always for desktop, web, mobile, or device 
applications. There is a significant opportunity for delivering and iterating upon 
the system-to-system integrations that businesses need to operate.

Connectors - The API-first transformation has produced many platform, 
application, and pipeline connectivity opportunities. Looking into them will 
reveal opportunities for API experiences that you can inject into solutions 
consumers already use.

Bottom-Up - Your sales strategy may need to speak g to the needs of 
consumers at the lower levels of an organization, spreading across the 
enterprise organically.

Top-Down - Your sales strategy may need to consider the realities of selling in 
a top-down fashion, reaching business and technology leadership. A top-
down approach requires a different set of product packaging that speaks to 
the needs of decision-makers.

Being deliberate and concise in your API product sales strategy will help strengthen 
your position. It will impact all aspects of your API lifecycle and governance. There is a 
Venn diagram of considerations as you stitch together and evolve your sales strategy in 
this new era of self-service and reliable API products. The areas you invest in will shape 
how you sell and what the needs and expectations of your consumers will be—so make 
sure to plan accordingly.

Like other aspects of enterprise operations, sales is undergoing a shift, using historical 
practices that are still relevant, but also modernizing the sales toolbox with new 
constructs and practices. It is up to you to set the tone for your sales strategy by 
defining which of these areas matter the most to your objectives and which offer you 
the greatest opportunity for using API-first transformation to change how business is 
done today and tomorrow.



Chapter 8 | The Essential Elements of API Technology 51

4.5 A Built-In Feedback Loop
Think of API marketing and sales as the digital version of just-in-time manufacturing, 
where marketing teams get people in the door by speaking to their immediate and 
future needs. When digital resources are modular and composable, and the life cycle 
around APIs is easily iterated, marketing teams can both speak to what already exists 
and hint at what will come next. Sales teams can map existing resources and 
capabilities to the ideal experiences consumers desire, instantly delivering what they 
need now and getting to work on developing what they will need next.

With an intimate knowledge of existing digital resources and confidence in the ability of 
the teams behind your APIs, marketing and sales workers can confidently obtain and 
retain customers’ attention by helping them transition to what is coming next. An 
API-first marketing and sales strategy is not separate from the API life cycle. In an 
optimal situation–it informs the API life cycle, producing what is needed at the moment 
when you are talking with potential customers. There is still a massive divide between 
sales and developer relations, but the sweet spot for the enterprise lies in minimizing 
this divide as much as possible while staying true to your business goals and your 
consumers.



52 Part 01 | Strategy Chapter 5 | Platforms and Digital Resources

05
Platforms and Digital 
Resources
To develop effective APIs, you need to think and act strategically. That means using a 
platform, rather than adding APIs willy-nilly. You also need to document and categorize 
your digital resources so you’ll be ready to put them to work when the next API 
opportunity arises. You need to create solutions you can constantly iterate, making 
improvements as technology advances and user needs change. This chapter will show 
you how to accomplish these important tasks.

5.1 API Platforms 
API platforms are software systems with integrated tools and processes that allow 
producers and consumers to effectively build, manage, publish, and consume APIs. 
They leverage existing infrastructure, as well as an ever-expanding and changing mix of 
API-driven services, to define, shape, and sustain business in a digital marketplace.

Integrated - API platforms are seamlessly integrated with your existing 
operations. They take the source control and CI/CD you use as part of the 
existing software development life cycle and marry it to your gateway and 
APM solutions. That will equip your teams with a modern API life cycle that is 
bolted to your existing investment in on-premises and cloud infrastructure. 



Chapter 8 | The Essential Elements of API Technology 53

Discoverable - APIs are naturally searchable and discoverable. You rely on 
your teams to always publish their artifacts and supporting metadata, with 
workspaces and repositories indexed and made available as a defaut..That 
enables your infrastructure to keep pace with the business, and allows teams 
to focus on the work that moves business forward, not just busy work.

Collaborative - An API platform brings teams and APIs out of the shadows, 
lowering the walls between business and IT groups and making both the 
producer and consumer side of the API life cycle a collaborative affair. With a 
platform, every aspect of a modern API life cycle is modular, portable, 
shareable, and executable. That helps to support more stakeholders across 
API operations and attracts the business expertise to bring APIs in alignment 
with meaningful business outcomes.

Observable - API platforms allow for any output across API operations to be 
gathered, measured, and made available via visual dashboards and reporting. 
That helps make very abstract APIs more tangible and connects them to 
business outcomes. Observability allows you to understand the overall state of 
enterprise operations and begin making changes to steer your business where 
you want it to go. That eventually results in a more agile and nimble enterprise.

Automated - API platforms deliver APIs, but they are also defined by APIs, 
making every part of the API life cycle automatable. Automation allows you to 
use workflows that are scheduled and executed from one or more cloud 
regions via CI/CD pipelines. That means you can respond daily to events 
occurring at scale across your organization, whether they are critical or 
mundane. You can use smaller teams and still provide them with the resources 
they need to meet the future demand of their industry.

Governed - Platforms bolt API operations onto our existing organizational 
infrastructure via standards like SSO and SCIM, and allow us to “see” all of our 
APIs so that we can ensure they are reliable, secure, and consistent. An API 
platform grounds not just the design of our APIs, but also the way we 
document, test, deploy, distribute, and observe them. That elevates 
governance beyond naming and ordering APIs, allowing platform-level control 
over the entire life of hundreds or thousands of APIs.

In the last decade, we’ve moved from using tens or hundreds of APIs to thousands. In 
the next decade we will move from thousands to hundreds of thousands, which can 
only be achieved with an industrial-grade API platform to carry the load.

A platform approach to delivering the API products your consumers need provides a 
foundation to build trust, making marketing and sales more impactful. 



54 Part 01 | Strategy Chapter 5 | Platforms and Digital Resources

5.2 Defining your Enterprise Digital 
Resources
The modern enterprise is made up of hundreds or thousands of individual digital 
resources stored in databases and file systems, and put to work across a dizzying array 
of desktop, web, mobile, and other types of applications or integrations. You see the 
vast inventory of enterprise digital resources in browser URLs and in the digital 
experiences we encounter in our personal and professional lives. These resources 
shape our offline and online experiences each day as we engage at work and at home 
on our mobile devices.

Users - Every one of our user profiles is made accessible via APIs, so we can 
log in, follow, and be followed, allowing thousands or millions of users to 
engage via a single platform–on any device they choose. 

Messages - We send messages back and forth every day on v SMS and other 
common messaging formats. It is the proprietary platforms of messaging APIs 
that allow us to engage with our closest friends, family, and coworkers in 
real-time.

Images - Every one of the social media images and photos on our mobile 
phone is published, stored, organized, backed up, and shared using APIs, 
providing us easy access to visual representations of the world around us.

Videos - Like images, videos are defined, published, and shared across the 
web and social media channels using APIs, allowing us to capture the world 
around us and weave these moments into our digital presence, blurring the line 
between online and offline experiences.

Payments - APIs allow us to send and receive money, dealing with anyone in 
the world. They serve as the basic financial ingredient that makes our world go 
around, funding the lives we lead online and offline.

Documents - The web is made up of digital documents in HTML, PDF, and 
other digital files. Thanks to APIs, we can not only publish and share them, but 
have them signed by multiple parties, allowing us to do business around the 
globe.

These are just a handful of the most common digital resources we all encounter each 
day. There are millions more. Your API catalog should represent all of the raw digital 
resources your enterprise depends upon, and your API networks should help you make 
these raw resources available to the consumers who need them the most.



Chapter 8 | The Essential Elements of API Technology 55

Just as you do in the physical world, you need to have full control over your vital digital 
resources, and you must be able to effectively create and apply them as needed across 
operations.

Always iterate upon your enterprise digital capabilities
A digital capability is simply a representation of something that can be accomplished 
digitally, defining a process, workflow, model, or algorithm that is valuable to internal  
or external consumers. Digital capabilities are often defined by one or many API 
requests or subscriptions that reflect a specific business capability. They may represent 
a single product offering or bundle multiple capabilities together for a specific digital 
product experience.

Flows - A workflow consists of an orchestrated and repeatable pattern of 
activity, enabled by the systematic organization of resources into processes 
that transform materials, provide services, or process information using 
API-defined resources.

Actions - Digital capabilities are designed to enable action of some sort, 
allowing online or offline processes to be triggered and setting additional 
workflows in motion. Actions also generate data along the way, producing 
intended outcomes across platforms or real-world devices.

Events - Organizations are increasingly defined by meaningful events that 
occur across internal and external operations.These events deliver the 
intended outcomes business and technical leaders are looking for, allowing  
for the orchestration of the desired outcomes that matter most. 

Models - Artificial Intelligence and machine learning models are developed, 
iterated upon, and applied in increasingly modular ways using APIs. That’s 
because APIs can access the data we have stored in databases and collected 
from daily operations and use it to iterate upon algorithms to make them  
more useful.

It should be clear by now that enterprise digital capabilities are defined by APIs. 
Business is set in motion through automation and orchestration across the native and 
third-party digital capabilities that each organization has access to. Being API-first 
allows you to define all of the private and open processes you apply across operations 
in private, secure, and reliable ways.



56 Part 01 | Strategy Chapter 5 | Platforms and Digital Resources

Your business operations depend on the synchronous and asynchronous delivery of 
many processes, putting your native, partner, and third-party resources to work. APIs 
allow you to define all of the internal and external digital resources you depend on. Your 
digital capabilities allow you to orchestrate and automate with these resources. 

The collective power of your enterprise capabilities across domains—and your ability to 
apply and iterate upon them based upon how they are used—define what you are 
capable of as an enterprise. The API-first transformation is realized when you are able 
to define, use, and evolve your enterprise digital capabilities with maturity and control. 
How well you execute these processes will determine just how capable your 
organization truly is.

To summarize, digital resources provide the raw ingredients we need to power the 
business and digital capabilities bring APIs closer to achieving business outcomes that 
make sense to stakeholders. Transforming resources into business capabilities is 
remaking the enterprise landscape. The future will be defined by those enterprises with 
the strongest enterprise API life cycle muscles.

5.3 Making Your Infrastructure and 
Applications Composable 
Modern software is about composing, assembling, evolving, and decommissioning 
business resources and capabilities to meet the ever-changing needs of the enterprise. 
Today’s software not only allows us to build products, but to invent modular, industrial-
grade Lego building blocks that power the web, mobile, and device applications we 
need to do business at the pace of the Internet.

Resources - Every digital resource produced and consumed by the enterprise 
is available for use somewhere. Mapping out all of the atoms of your digital 
transformation keeps the business in line with what it needs to operate and 
compete globally in a digital landscape.

Capabilities - Essential workflows and algorithms are defined in detail through 
many private, partner, and public APIs. These APIs document what the 
enterprise is capable of at any moment, while also being ready to adapt, 
change, and respond to entirely new market needs.

Modular - Enterprise resources and capabilities should be as modular as 
possible, driving re-use and collectively applying them at scale. You need to 
reduce business value down to the smallest reliable form, then make it 
available as a product to consumers via APIs.



Chapter 8 | The Essential Elements of API Technology 57

Distributed - The enterprise is distributed geographically and organizationally, 
giving domains, groups, and teams the agency they need to deliver essential 
resources and capabilities while minimizing their dependency on other teams.

Discoverable - All the building blocks of the enterprise are discoverable, 
making digital resources and capabilities available to both business and 
technical stakeholders, as well as consumers. Everyone must have what they 
need to conduct business and compete.

Self-Service - Enterprise digital resources and capabilities are available via 
self-service and are visible only to intended audiences. Those who have 
access should be able to sign up and begin putting APIs to work with as few 
steps possible.

Reliable - Digital resources and capabilities must be reliable, providing users 
what they need without friction. Establishing and maintaining trust with 
consumers means reliably doing exactly what they need. 

Observable - The ability to observe the usage of any digital resource or 
capability must be the default, no matter how many times something is reused 
and bundled with other services and no matter the scale of the deployment.

Modern software is composable because APIs exist just beneath the surface. APIs are 
how massive enterprise operations are made composable, reusable, and scalable. They 
do the hard work of reshaping the enterprise, using and re-using resources to provide 
the greatest business value possible.

A composable enterprise is the goal of an API-first transformation because this is where 
new revenue streams will emerge.APIs provide the agility and flexibility enterprises will 
need to compete and get ahead in today’s digital marketplace. Composability is quickly 
becoming an essential enterprise trait.

Organizations further along in their API-first transformation journey will already have 
the digital resources, capabilities, processes, and practices in place to become agile 
and composable. The rest must internalize APIs in ways that will allow them to catch up.



58 Part 01 | Strategy Chapter 6 | Maximizing Value for Users

06
Maximizing Value
for Users
In the end—and if you’re doing it right, in the beginning and the middle, too—APIs are all 
about the business stakeholders and customers who use them. You can create APIs 
with the most elegant code imaginable and design them to integrate with hundreds of 
interfaces, but if you’re not giving users the features they want, you’re wasting your 
time (and your company’s money). This chapter dives into what it means to deliver value 
and suggests some simple but highly effective ways of doing just that.

6.1 Treating Your APIs as Products
Treating APIs as products means doing the hard work to establish user empathy and 
ensure that they’re easy to use and possess the shortest possible time-to-value. Good 
API products provide a complete API experience, with quality documentation, feedback 
loops, and support channels that give you the insights you need to iterate upon each 
new API version, helping to ensure that every release meets the needs of the widest 
possible audience.

Consumer-Centered - Make sure that the design, development, and 
operation of your APIs is as consumer-centered as possible.



Chapter 8 | The Essential Elements of API Technology 59

Experience - Your API operations should focus on creating the most 
meaningful experience possible for your consumers, transcending the 
resources and capabilities being offered.

Use Cases - Make sure that your APIs are designed for specific business use 
cases that matter to your consumers. Make a commitment to understanding 
their processes.

Feedback Loops - Invest in your feedback loops with consumers, making it as 
easy as possible for them to provide feedback you can use as a road map for 
future iterations.

Value Generation - Ensure that your APIs focus on generating value for your 
consumers as well as your platform. API operations must benefit both you and 
your consumers.

Measurement - Define your metrics, gather data, and use it to make sense of 
how your consumers are putting your APIs to work making the information part 
of the API life cycle.

Revenue - Have a clear strategy for how your APIs will generate or support 
revenue generation, justifying their existence along the way.

Road Map - Establish a road map on day one, and make sure you are keeping 
consumers informed of possible future developments to keep them along for 
the ride.

Treating your APIs as products will lift you from merely creating applications that are 
technically good to delivering solutions that meet consumer needs. Each new version is 
a dance with consumers, requiring you to find the right balance, helping them while also 
meeting your business needs. 

Treat APIs as products, even if  
you don’t plan to monetize them. 
Gartner5



60 Part 01 | Strategy Chapter 6 | Maximizing Value for Users

EXPERT PERSPECTIVE

Speaking to the next generation of API 
product managers

One of the most important topics I have 
discussed with API practitioners on Breaking 
Changes this year has been treating your APIs 
as products and making sure you get feedback 
from product managers to drive your products 
forward across the API life cycle. So it was 
appropriate that we kicked off a recent season 

of the podcast with Deepa Goyal of PayPal, who shared her journey to become 
an API product manager and explained how important it is to produce content 
that speaks to the next generation of API product managers.

Looking back over her experience as an API product manager at PayPal, Deepa 
shared how little practical information was available to her about what it meant 
to be a product manager in charge of iterating upon APIs. Sure, there were 
plenty of marketing materials from API service providers saying you should treat 
your APIs as products, and similar content was being generated from the usual 
white male API pundits in the tech sector. But there was not comprehensive and 
practical guidance showing API product managers how to be successful as part 
of a modern API life cycle. Most importantly, there was a lack of knowledge and 
wisdom needed to train the next generation of diverse technical product 
managers and help them grasp the nuances of the API economy while showing 
them what is working on the ground today. 

Today, with more experience under her belt, Deepa helped me better 
understand the business alignment that needs to be part of the API life cycle.
That means more investment in API distribution and more thorough developer 
experience. At first I didn’t quite see the sense in beginning the API life cycle 
discussion with product managers and the insights they obtain after an API 
goes into production, but now I see this is where the feedback loop with our 
consumers begins. Deepa provided a look into next-generation development 
experience, which includes documentation, but doesn’t stop there. It also 
includes blogs, YouTube videos, and other channels that provide the 
onboarding and learning experiences that best suit consumers’ needs. 

Deepa Goyal



Chapter 8 | The Essential Elements of API Technology 61

6.2 Identifying Outcomes: Jobs Theory 
and Interoperability

Getting jobs done
Jobs theory, also known as “Jobs-to-be-Done” theory, provides a useful framework for 
designing, delivering, operating, and deprecating APIs. This theory complements an 
agile approach, helping to define the needs of consumers in the shortest possible time 
frame, iterate quickly, and respond faster than your competitors.

Get Something Done - People buy a product or a service to get something 
done. They don’t care what a company’s incentives are, they just want to 
accomplish their job.

Jobs are Functional - APIs must have a purpose that speaks to the needs of 
consumers, making and retaining an emotional connection.

Reaching Maturity - A Job-to-be-Done is stable over time. Your APIs should 
reach a level of maturity after several iterations, stabilizing into a reliable 
product for consumers.

Agnostic Interfaces - A Job-to-be-Done is solution-agnostic. APIs don’t know 
or care about other APIs. Each one does one thing and does it well, focused on 
the job at hand.

Measuring Right Thing - Success comes from making a job, rather than the 
product or the consumer, the unit of analysis, focus on the value it delivers.

As Deepa said, “What do they like? What serves them best?” She was 
completely focused on the intersection of business and consumer value. She 
discussed the importance not only of speaking to consumers on their terms, 
but of reducing friction with onboarding by measuring the “time to first call” for 
developers moving from discovery to an integration. I use this phrase a lot to 
help articulate the importance of developer experience. Deepa quickly elevated 
it for me by making it more closely aligned to business, expressing it as “time to 
first value.” This phrase demonstrates for me the important lens product 
managers can bring to the discussion. Product managers help elevate our view 
above the very technical metrics we use and help us establish better alignment 
not just with our business, but with our consumers.



62 Part 01 | Strategy Chapter 6 | Maximizing Value for Users

Marketing Has Impact - A deep understanding of the customer’s job makes 
marketing and API iteration more effective.

Get It Done on the Cheap - People want products and services that will help 
them get a job done better, and when possible, less expensively, opening up a 
perpetual opportunity for APIs.

Bring Value to Consumers - People seek out products and services that 
enable them to get an entire job done on a single platform, making API 
integrations ideal for what they need.

Delivering Success to Consumers - Innovation becomes predictable when 
“needs” are defined as the metrics customers use to measure success for 
getting a job done.

A Jobs-to-be-Done methodology provides an unrelenting focus on the value delivered 
by an API. The key is providing what consumers need, then relying on your feedback 
loop to help guide the rapid iteration of your API products, always keeping in alignment 
with consumers. A jobs-based orientation provides the fuel for your APIs and helps you 
prioritize operations to move your enterprise forward.

A common organizational misconception is viewing APIs as technical details. Focusing 
on Jobs-to-be-Done helps us approach APIs from the business end, rather than losing 
sight of business goals in a forest of code. 

Making interoperability the default across operations
Ensuring interoperability–among distributed teams, federated groups, lines of 
businesses, and partners–is the desired state of existence for any organization. While 
the desire to operate as a single entity may prevail, the reality on the ground is usually 
distributed in both the physical and the virtual realms. Facilitating interoperability is one 
of the top reasons for enterprises to invest more in their API operations, ensuring that 
their business can connect in many different ways when necessary.

Distributed - The more distributed the enterprise is, the greater the demand 
for interoperability, which gives teams the ability to flex their muscles with 
APIs. As businesses depend more on distributed services,, we should give as 
much freedom and agency to teams as possible through APIs.



Chapter 8 | The Essential Elements of API Technology 63

Standardized - We always lean on existing internet and industry standards, 
adopting, iterating, and contributing to them before we develop our own.
However, in the absence of existing standards, enterprises should evolve their 
own common patterns to the status of standards–first across the 
organization,and possibly at some point, within their industry.

Seamless - All of our infrastructure and applications are part of a seamless 
web of business interoperability. We are producing and consuming APIs as 
rapidly as the business dictates, trying out new services, then working to 
integrate them with our API platform. We are using APIs, then iterating and 
evolving beyond them whenever possible. We should see all digital resources 
and capabilities as seamless and interoperable building blocks.

Event-Driven - Enterprise systems should be designed to respond to the most 
meaningful events occurring across our platforms. And the platforms we 
depend on must allow operations to respond in real time to what is happening 
across the market. We must allow not just applications, but our enterprise 
infrastructure to identify, subscribe, and respond to change as it is happening 
across the seamless platforms we use to do business.

 
Interoperability in today’s digital landscape isn’t just nice to have, it is an essential part 
of doing business, keeping up with changes across the global marketplace. 
Interoperability doesn’t put you at a disadvantage with your competition–in fact, it does 
the opposite, helping you develop the muscles you need to outmaneuver competitors 
and develop entire new categories of doing business.

6.3 Delivering Meaningful Experiences 
Providers who are further along in their API-first transformation have teams who are 
proficient in developing and maintaining digital resource APIs, and are rapidly delivering 
the meaningful and composable digital capabilities that power the business. Examining 
the digital experiences powered by APIs enables you to effectively map your APIs to 
real-world experiences.

Discovery - API-driven experiences should be easily discovered in the areas 
consumers frequent. Each API product should speak to the intended 
experience for targeted consumers, making it as easy as possible for them to 
find in the moment when they need it.



64 Part 01 | Strategy Chapter 6 | Maximizing Value for Users

Evaluation - Each digital experience should be easy to test, requiring minimal 
gates to step through to understand its value. The more you make your 
experiences available for consumers to evaluate, the more you will learn from 
them.

Success - Defining what success means for each digital experience helps 
make APIs much more effective. Having a clear understanding of successful 
outcomes will help reduce the surface area of each API that is used to shape 
experiences.

Effort - As an API producer and provider of digital experiences, it is important 
that you empathize with the effort you require from your consumers. 
Understanding this effort will help you develop empathy and optimize the 
experience.

Seamlessness - Digital experiences should always integrate with and 
augment existing consumer experiences, requiring as little from consumers as 
possible. Once value and trust have been established, you can evolve the 
experiences while remaining integrated.

Awareness - Effective digital experiences help build awareness amongst 
consumers, informing and educating them incrementally. Awareness is about 
investing in your consumers and working to build trust via a useful digital 
experience.

Engagement - Sticky and beneficial experiences focus on direct engagement 
with consumers, providing watchable and forkable experiences. A focus on 
engagement provides some of the metrics you will need to understand how 
effective you are.

Iteration - Experiences should adapt and evolve based upon the availability of 
new resources and composable capabilities. Digital experiences should reflect 
ongoing needs and desires of consumers, shaping what comes next.

Most important of all, digital experiences provided by APIs have to be pleasant and 
beneficial. Making an experience memorable and leaving a positive mark on the 
consumer is what the API-first transformation is all about. The aim is making your API 
products fit consumer needs.



Chapter 8 | The Essential Elements of API Technology 65

Digital experiences represent a more mature API economy, one where we are beginning 
to get sophisticated with technology, but are also improving our understanding of how 
and why we are doing APIs. That will help us bring digital products closer to meeting 
consumer needs while keeping them aligned with overall business goals, evolving and 
changing to suit both as circumstances dictate. 

EXPERT PERSPECTIVE

Solving the right problems with API 
feedback loops

By the time I sat down with Jessica Ulyate, 
Platform Associate Director of Product at 
HelloFresh, I had been getting schooled on 
product management for several months. I was 
very keen on getting her definition of product 
management in API operations. Jessica gave me 
a very succinct response: Product management 

is simply the intersection of business, development, and consumers. For me, 
this line sums up the most meaningful  discussion we can have about delivering 
and iterating upon our API resources, capabilities, and experiences. 

Echoing what I have been hearing across many other conversations with 
leading API practitioners this year, Jessica placeda lot of emphasis on the API 
feedback loop,, and specifically, the role product managers play. They can help 
you understand what your customers need and what your business needs, then 
help you iterate sensibly with this balance in mind. Product managers must 
understand where the business is headed, where the industry is headed, and 
what consumers need at this intersection. Then they negotiate with 
development teams to deliver the most meaningful solutions possible at the 
current moment. Jessica soberly states that there is no gold star for product 
managers at the end of the process. It’s a never-ending game–which is a 
challenge, but it’s also what makes API product management so very 
interesting.

Another dimension Jessica shared, which also reflects what I am hearing in 
other conversations, was the importance of investing in a platform group to 
support your development teams. I asked Jessica what her definition of 
platform operations was, and t once again, her answer was simple: “We help 
developers create value faster.” Platform operations is all about removing 

Jessica Ulyate



66 Part 01 | Strategy Chapter 6 | Maximizing Value for Users

6.4 Investing in Low-Code and No-Code 
Opportunities
Low code/ no code refers to an ever-growing opportunity to deliver applications without 
writing code–or at least minimizing the amount of code that needs to be written. This 
makes producing and consuming APIs much more inclusive, allowing those who are not 
fluent in writing code to benefit. But it also helps those who are proficient in coding by 
making them more productive in their work. Low-code/no-code business and 
technology stakeholders have a variety of ways of engaging with API operations and 
the businesses they support.

Inventory - To enable low-code/no-code development, provide business and 
technical stakeholders with a robust inventory of internal, partner, and third-
party resources they can use when creating low-code/no-code integrations 
and applications, enabling them to do whatever is needed across services.

Flows - Low code/no code offers the ability to create and evolve common 
business workflows using many different APIs, allowing them to be used by 
technical and business stakeholders to perform common business tasks e 
without getting their hands dirty in the code.

obstacles for developers, reducing friction and allowing them to focus on doing 
the things that bring value to your business. It is not about setting up 
technology environments, struggling with infrastructure, or dealing with any 
other aspect of operations that is known and has been done before. Jessica’s 
view of platform operations helped me better understand the need to help 
development teams focus on business value. That, in turn, will help product 
managers do a better job of balancing business and consumer needs. 

Earlier in her career, Jessica would have said you need to have technical chops 
to be a product manager.But after being repeatedly humbled by folks who 
possessed the right domain knowledge, she’s changed her tune. Technical 
knowledge won’t always give you the lens you need as you are sifting through 
customer feedback loops, or the metrics you use to measure success. What 
you must do is strike the right balance between business development, 
operations, and the consumers your platform serves.



Chapter 8 | The Essential Elements of API Technology 67

Authentication - The complexities of authentication and authorization should 
be abstracted away, making it easy for anyone to be able to navigate the 
secrets needed to authenticate with one or many APIs, and solve 
authentication problems along the way.

Visual - With low-code/no-code, you make it a visual experience to navigate 
API inventory, build workflows, and configure authentication. Anyone can 
stitch together many different APIs, allowing business or technical 
stakeholders to take advantage of using them.

Runtime - Low- and no-code applications provide a simple runtime any user 
can employ to run their workflows, providing the compute power to make each 
individual request, handle responses, and execute workflows in the order 
suggested by the user and executing the jobs they need done.

Automation - You have the ability to schedule and trigger specific events, 
setting in motion the desired workflow. Low- and no-code allows anyone to 
automate common business tasks throughout the day, so that teams can do 
more with less. 

Collaboration - Low- and no-code improves collaboration and sharing, 
providing feedback and allowing anyone to iterate upon the functionality of 
each workflow. That makes business integrations and orchestration a team 
affair, something everyone learns from.

Observability - People using low code/no code applications can see how their 
workflows and automations are running. They can also see the results of their 
work and how it fits into context with what other users are doing, cultivating a 
higher awareness of how the organization functions.

Low-code/no-code isn’t just for non-technical folks. It will help enterprises deal with the 
demands of their digital future. There is a perpetual shortage of developers, and 
extending the ability to develop applications to more people will expand the pipes 
behind the applications and integrations that business stakeholders depend on, giving 
them the . resources and capabilities they need to be successful.

NOTES

5 “Top 5 API Lessons for Software Engineering Leaders,” Gartner blog, 2021.



68 Part 01 | Strategy Chapter 7 | The API-First Difference

07
The API-First 
Difference
API development is different for every organization. If you’re not sure where you are on 
the API maturity curve, then making decisions about what to do, when to do it, and why 
can be bewildering. This chapter will describe the API journey and show you some of 
the capabilities to strive for. Then it will help you figure out where you stand and what 
kind of results to expect as you go along.

7.1 The API-First Journey
The API-first transformation is a journey. Every company is doing APIs today, but many 
are not aware of their scope and are not making them a priority across technical and 
business groups. At Postman, after speaking with hundreds of enterprises, we tend to 
see three distinct phases of the API journey: API-early, API-aware, and finally, API-first–
the optimal state.



Chapter 8 | The Essential Elements of API Technology 69

In addition, we use 13 different schemas for API-first transformation to determine where 
an enterprise stands in its individual journey. Examining the organization through these 
lenses reveals not only the organization’s level of API maturity, but how it can move and 
respond to APIs as a single entity. This analysis reveals the business benefits available 
to the enterprise from becoming API-first and helps to alleviate the friction of adopting 
APIs to power business applications.

It is easy to find yourself drowning in the sprawling enterprise API landscape. You begin 
doing APis for system-to-system integrations, producing and consuming APIs for web 
applications, and then scrambling to use APIs to meet the needs of mobile and device 
applications. The thirteen cross-cutting aspects of your technology operations provide 
a grounding for quantifying the journey–otherwise, you would find your organization 
with less control over direction. All of the blueprints you will find in this book are 
mapped to optimizing in these thirteen areas, providing the potential seeds for growth 
across critical areas that will contribute to positive business outcomes.

The API-first transformation will take time. You must have a strategy to define where 
you are going, and it is important to regularly pull off to the side of the road and assess 
where you are. You won’t get very far unless you have a way of defining your collective 
destination and a framework for assessing progress. A lack of collective awareness 
about how APIs are produced and consumed across the enterprise and the absence of 
a framework for defining operations and the change occurring across operations will 
leave you lost. Seeing API-first as a journey and knowing where you are helps make this 
massive undertaking more manageable. If you do this well, you can have fun along the 
way, and I guarantee you will learn a lot as you progress in your personal and 
professional API-first transformation.

7.2 Why Becoming API-First Matters
Future-proofing your organization
All organizations want to minimize risk and make the future as predictable as possible. 
Becoming API-first will help you do that. It helps reduce your legacy baggage, ensuring 
that your teams are always iterating and innovating to embrace the future as it arrives. 
API-first is about using APIs to rapidly iterate and map out change as it is happening, 
allowing teams to respond to whatever comes their way. That can help you resolve 
challenges ahead of the competition.



70 Part 01 | Strategy Chapter 7 | The API-First Difference

Innovation - As an enterprise, you are able to make innovation part of your 
operational DNA, with teams actively flexing their innovation muscle, 
experimenting, and engaging with consumers to find the business value in 
what comes next. You are modernizing legacy infrastructure and delivering the 
services the business needs today, while also innovating and learning what is 
needed for tomorrow. 

Agility - Teams are able to respond quickly to market shifts, taking knowledge 
from regular day-to-day operations, but also experimenting via labs, and other 
innovative techniques. Then they respond with new products that meet a 
changing world. The process involves starting with well-oiled enterprise API 
operations, then responding to whatever comes next with small, quick, and 
well-informed iterations, using the digital resources and capabilities needed to 
accomplish goals.

Velocity - Teams know what they are capable of, and are able to increase or 
decrease velocity as required by the business and consumers. Having just the 
right velocity needed to respond to shifts in the market can move you ahead of 
the competition. Velocity will take a lot of training and experience, but with the 
right investments across the API lifecycle, teams will have what they need to 
respond to whatever comes their way.

Change - Change is embraced in an API-first environment. It is expected, 
welcomed, and seen as the right way. Teams are well-versed in defining, 
designing, and delivering API-driven change, and leveraging the feedback 
loop from these iterations to inform what is next. A Jobs-to-be-Done attitude 
equips everyone with a focus on the value present in change, and their training 
and confidence will prepare them for the work required.

Control - Leaders have the control they need not only to comprehend the 
state of operations, but to understand it in relationship to external consumers.
They have observability and control, making adjustments when needed as 
agile and responsive teams move in the right direction. Being API-first shows 
enterprises what they need to do to move forward and shows them the 
direction they need to take to lead the way.

Adaptive - API-first organizations are able to adapt to whatever is thrown at 
them, evolving to serve changing markets and completely reinventing specific 
domains of the enterprise if required. An API-first approach perpetually finds 
the optimal state of doing business, delivering the products markets are 
demanding today, while also being prepared for what is needed to lead the 
way tomorrow.



Chapter 8 | The Essential Elements of API Technology 71

There is no way to predict the future, but APIs give us a proven way to respond to any 
number of possible futures that may arrive tomorrow. APIs don’t necessarily reveal 
exactly what we need to do business in the future, but operating in an API-first state 
means we will be able to quickly respond, evolve, and step up to confidently respond to 
what the future holds. Being API-first is how companies are staying relevant in the face 
of a changing demographic and business landscape.

Enabling unlimited expansion
APIs are the building blocks of modern digital transformation. They provide the 
reusable, composable, and scalable units of value that are defining digital resources 
across every industry. APIs give us the ability to deploy and operate essential services 
across multiple clouds and multiple regions, allowing enterprises to redefine and rebuild 
their business in a much more resilient manner. APIs give us the digital capabilities we 
need to sustain the existing business, but also to define entirely new sectors we haven’t 
yet imagined.

Resources - The enterprise has the required digital resources at its disposal 
for assembling the applications, integrations, and automation needed, but it 
also has the API factory floor, giving it the capacity to deliver the next 
generation of resources.. APIs are the building blocks of any future world we 
want to create, allowing us to manifest the products we know markets will 
need.

Capabilities - There are thousands of business workflows in motion across 
the enterprise at any given second. With APIs, they become discoverable, 
well-defined, and executable by business and technical stakeholders. That 
allows for the rapid creation, maturing, and scaling of known and unknown 
workflows that the enterprise will need to do business tomorrow.

Scale - Combined with the elasticity of the cloud, an API-first digital platform 
provides the scale required to build an entirely new world, providing an 
unlimited supply of digital resources and capabilities, as well as the teams to 
deliver new products. Products can be rapidly created, iterated upon, and then 
scaled to meet the demand of markets within weeks or even days, not years, 
providing the just-in-time scale needed to compete in a digital world.



72 Part 01 | Strategy Chapter 7 | The API-First Difference

Multi-Cloud - The next era of cloud computing will not be isolated in a single 
cloud. The enterprises that have achieved a world-building level of operations 
are finding success operating across all of the cloud platforms. They are 
investing in the talent, processes, and infrastructure needed to wrestle with 
the nuances of each cloud platform, but leveraging APIs to abstract away the 
differences, allowing them to successfully operate in all of the top cloud 
providers whenever business demands it.

Multi-Region - API-first enterprises are applying their new-found API-first 
agility and velocity to stand up and operate API infrastructure in regions 
closest to their consumers. They are responding to regulation and data 
nationalism, but also reducing latency by operating closer to the edge of their 
business networks. APIs can help organizations define their operations by 
domain, but also by geographic region, optimizing the platform to provide a 
better consumer experience.

Regulated - An API platform lends itself to efficient management of highly 
regulated enterprises, responding to internal as well as external influences in a 
balanced way. Layering government regulation into a mix of governance tools 
gives leaders more control over how the enterprise responds to markets and 
regulators, while staying focused on the needs of consumers. The API platform 
pushes regulation to a state in which the enterprise has the ability to shape it 
as a positive force in how the company does business. 

Becoming a category-defining power
The agility associated with a high-performing API-first approach to business was 
demonstrated by Amazon in developing Amazon Web Services, which changed how the 
company does business. API-first startups like Stripe and Twilio provide similar 
examples,. setting into motion the framework for gig economy businesses such as 
ridesharing and food delivery, among others. APIs allow both startups and enterprises 
to rapidly iterate while maintaining a feedback loop with consumers, keeping the 
trajectory and velocity of APIs moving in the right direction and increasing the potential 
for creating entirely new ways of doing business.

Domains - Well-defined domains within the enterprise don’t just result in more 
productivity, quality, and a governed API life cycle. They can transcend their 
platforms and communities to create entire new industry-level domains. They 
allow organizations not only to lead, but to set the rules for how the business 
works.



Chapter 8 | The Essential Elements of API Technology 73

Products - An API platform factory floor is capable of delivering entirely new 
products that markets want and need–as well as those they may be currently 
unaware that they need. That’s because teams constantly evolve the products 
consumers need, responding rapidly to changing market demands through 
rapid iteration of APIs and the applications they support.

Standards - The design, schema, and approaches adopted across the 
enterprise can become so mature and useful to business that they begin to be 
emulated and adopted in other external APIs. They can become the de facto 
standard within an industry, not through a traditional standards body, but by a 
forward-thinking company’s leading by example to deliver what is needed.

Velocity - An API-first company achieves levels of enterprise-wide velocity 
that other competitors can’t keep pace with. They have no chance of catching 
up, because by perpetually optimizing the digital factory floor, large 
enterprises build enough momentum to set the stage for an entirely new way 
of doing business.

Pulse - Through an extensive network of feedback loops with consumers 
across thousands of internal, partner, and public APIs, the enterprise is able to 
take the pulse of what is needed across an industry, or multiple industries. 
That allows a single business to redefine existing industries or create entirely 
new ways of doing business.

API-first organizations will shape the business ie categories of the next fifty years. 
Enterprises that are able to transform their API-first operations into new business 
models are the ones that will bring us the next big thing.

7.3 Where Are You in Your API-First
Journey?
There are three categories of businesses in today’s digital marketplace:those that are 
unable to keep up, those that are effective at competing and leading existing industries, 
and those that are defining entirely new ways of doing business. How much you invest 
in your API-first transformation will define which of these categories you will be in, and 
will dictate the future of your enterprise. We would all like to be in the third category. 
BBut to get there we must do an honest accounting of where we are today, and what it 
will take for us to achieve an API-first state.



74 Part 01 | Strategy Chapter 7 | The API-First Difference

API-Early
Enterprise organizations early in their API journey are already doing APIs–they just 
aren’t, doing them in a strategic, observable, or governable way. They exist in a pretty 
chaotic and undefined landscape of digital services that are powering a mix of web, 
mobile, and device applications, while cobbling together integrations across internal 
and external systems.

• Strategy - There isn’t much of a strategy to be found, and while all teams are doing 
APIs, they are left to their own devices for designing and operating APIs.

• Discovery - There is no central place for finding APIs at any point in the API lifecycle, 
resulting in a lot of redundancy in the APis behind applications.

• Applications - Desktop, web, and mobile applications are the priority when it comes 
to development, but the APIs behind them operate in the shadows, unseen except 
by anyone except developers.

• Visibility - There is a lot of anxiety about exposing APIs externally, even to trusted 
partners, because the organization lacks experience in securing and managing them 
over time.

• Quality - The quality of APIs is very low and generally unpredictable, leaving trust in 
teams and the APIs they produce low in the eyes of internal, partner, and public 
consumers.

• Security - There is a centralized security group, but it has difficulty securing what is 
unseen.There is no standard for security across teams, but they continue to launch 
APIs as needed.

• Productivity - Teams spend a lot of time reverse engineering existing APIs, trying to 
debug them and learn how they work in order to evolve.Most new APIs are delivered 
via code-led approaches.

• Velocity - The speed at which teams produce new APIs or enhance existing ones is 
very unpredictable, making planning and road maps difficult to communicate and 
achieve.

• Observability - Teams do not have much visibility into the health of individual APIs, 
let alone APIs at scale across the organization or l the operations behind the APIs in 
production.

• Governance - There is no consistency present across APIs. They all use different 
patterns, with a lack of standards leaving leaders unable to control the state of 
operations.

• Standards - There is a lack of awareness of internet and industry standards.There is 
no group helping to define and evolve internal organizational standards across 
teams.

• Regulations - Government regulations are seen as a never-ending source of friction 
and obstacles the enterprise must overcome, always preventing operations from 
moving forward.



Chapter 8 | The Essential Elements of API Technology 75

• Innovations - There is no room for innovation. All teams are expected to spend all of 
their time putting out fires, and there is no time and no resources to spend 
developing new ideas.

API-early enterprises find themselves in a perpetually reactive mode facing the 
demands of applications, projects, and seemingly endless incidents that arise in 
production and in supporting end-users. 

Being API-early means there are huge opportunities in laying the foundation for change. 
But it will take the right mix of roles across the enterprise to transform into becoming 
more API-aware.

API-Aware
Once an organization begins to wake up to the potential of being API-first, it starts 
investing in a strategy for producing and consuming APIs in alignment with business 
objectives. The company becomes more aware of the APIs that already exist and the 
life cycle that is moving them forward (or possibly holding them back). 

• Strategy - Teams have come together, acknowledging that an API strategy is 
needed.A formal document has been drafted, but leaders are just getting started in 
deciding how to proceed.

• Discovery - A central API catalog exists within the enterprise and for public 
engagement, but the APIs are never quite uptodate, not reflecting what is happening 
in production.

• Applications - Teams building applications have begun doing more planning and 
communication before developing web or mobile applications, resulting in better 
coordination.

• Visibility - An API management solution exists to handle the publishing of public 
APIs, but the process for securing them is undeveloped.

• Quality - Some teams have gotten a handle on testing their APIs, but there’s still a lot 
of work to do when it comes to test coverage and overall API reliability.

• Security - The organization has a central security group and is doing API security 
reviews, but teams producing the APIs see the process as too slow and heavy-
handed.

• Productivity - Teams are able to discover APIs developed across the organization 
and are exposed to development by other teams, increasing productivity, but these 
processes still need more work.

• Velocity - APIs are more discoverable by teams, including where teams are getting 
work done. The organization has invested heavily in hardening CI/CD workflows, 
releasing new iterations more often.



76 Part 01 | Strategy Chapter 7 | The API-First Difference

• Observability - Teams are using existing APM solutions to understand the health of 
their APIs. They are routing monitoring data into APMs, building dashboards, and 
understanding the state of their APIs.

• Governance - A centralized group has come together and begun defining 
guidelines, standards, and rules teams can use to help produce more consistent 
APIs.

• Standards - More IETF, IANA, and other Internet standards are making their way into 
the design of APIs, and more reusable patterns are beginning to be shared across 
teams. 

• Regulations - Regulatory compliance is beginning to become less daunting now that 
the enterprise landscape is coming into focus. The organization has a map showing 
teams where data is located.

• Innovations - Teams are beginning to find more bandwidth due to productivity 
gains. They are starting to feel they have more time to play around with new 
technologies.

API awareness breeds more API awareness. Organizations find their initial investments 
in discovery, quality, and governance begin to snowball, leading to more collaboration 
and coordination, with tooling, processes, and knowledge and shifting the enterprise 
towards becoming API-first.

The API-aware stage is where you begin to see the transformational properties of APIs 
at the domain and organizational level. APis can do a lot in a single application or 
integration, but it is at the collective organizational level that they will have the greatest 
impact on how the enterprise operates.

API-First
API-first organizations understand very well that applications are built as an 
interconnection of internal and external services through APIs. They realize that APIs 
define how enterprise digital resources and capabilities are made available to internal 
and external consumers, powering business applications as needed.

• Strategy - There is a living strategy defining the goals of enterprise API operations, 
outlining what the API lifecycle looks like across teams. Leaders regularly update the 
strategy.

• Discovery - The organization has an active catalog of private, partner, and public 
API resources. The teams behind them and the operations around them are 
discoverable, helping to facilitate use.

• Applications - Desktop, web, mobile, and device applications are regularly 
developed using common, reusable, and secure APIs. That speeds development, 
while keeping processes consistent.



Chapter 8 | The Essential Elements of API Technology 77

• Visibility - APIs regularly begin as private, internal-only constructs, but once 
complete, they are able to quickly be exposed to partners or even the public, based 
upon the demand for resources and capabilities.

• Quality - Nearly 100% of APIs are developed to meet the minimum bar for expected 
quality. They meet SLAs, and minimize the risk of breaking with each release, always 
providing the performance expected.

• Security - The organization hasn’t suffered a breach in years. APIs, no matter where 
or how they are used, enjoy the same level of security teams provided earlier in 
development.

• Productivity - Every API has a dedicated workspace and repository where teams 
can easily find APIs and the work going on around them. Teams have the tools they 
need to iterate and deploy APIs.

• Velocity - Teams release often with fewer failures, and are able to move from idea to 
release in a shorter period of time, enabling domains within the organization to 
respond more quickly.

• Observability - There is observability across nearly 100% of APIs. Teams can 
observe both individual APIs and across all APIs, and can see the infrastructure used 
to deliver them.

• Governance - Leaders properly govern teams and APIs across a well-known API life 
cycle, resulting in APIs that are consistent, documented, reliable, and easily found by 
consumers.

• Standards - Internet, industry, and organizational standards are alive and well in the 
APIs that teams design, and team members are actively participating and 
contributing to standards.

• Regulations - Teams easily achieve compliance with privacy and interoperability 
rules, reducing the time needed to respond to ad hoc privacy requests, while 
ensuring that all APIs are interoperable.

• Innovations - Teams regularly spend 20% or more of their time learning new 
technologies, experimenting with new types of APIs, and finding ways to optimize 
the way APIs are delivered.

API-first doesn’t mean all challenges have gone away. But it does mean that teams are 
better equipped to deal with anything that comes their way, and spend less time in a 
reactive state. API-first means that the API infrastructure behind desktop, web, and 
mobile applications is a priority. Even business units make sure the SaaS solutions they 
adopt have APIs to ensure interoperability and provide opportunities for automation.



78 Part 01 | Strategy Chapter 7 | The API-First Difference

7.4 Gauging Results
The API-first concept plays out in different ways for different organizations. Some see it 
as a destination to continually strive for, knowing they will never entirely attain it 
entirely, but will gain enormous benefits along the way. Others see it as a way of dealing 
with current and future challenges. There is no perfect, utopian API-first state. Your 
outcomes will be very much in alignment with your expectations, so it makes sense to 
understand this early on and set the right benchmarks for your teams. 

To be honest, the results you will see as part of your API-first transformation will be very 
disappointing early on. The transformation will seem too massive to handle, and you’ll 
suffer regularly from doubts, not quite knowing where to start or whether you are 
making an impact. You will live in a sort of groundhog day of API-first transformation, 
saying the same things over and over and experiencing perpetual déjà vu with process 
friction and challenges across teams. Even after you begin to pick up momentum, you’ll 
experience many low days where it seems like your projects are just too much for your 
organization to handle.

But once you begin finding your rhythm with a few right-sized API resources, you will 
begin to see the potential of being API-aware. Your teams will have much more shared 
knowledge about the API lifecycle, and they’ll begin using a common vocabulary in API 
contracts, such as OpenAPI and AsyncAPI. This is where you will begin to see the 
API-first opportunity and understand what you need to do to move your enterprise in  
the direction you want it to go. With a little more API momentum in your teams’ feet,  
you can expect better results in transforming your organization and boosting your 
business results.

The results you see on the ground will reflect the appetite your leaders and teams have 
for change and the scope of operations you have chosen to transform. It is common for 
those of us in the API space to recommend starting small. But that approach doesn’t 
work for everyone. In recent years I have begun recommending that leaders right-size 
their approach. Sometimes that means you need to go big. It depends on the results 
you’re looking for. Many business leaders I speak to say they simply can’t afford to go 
small, perhaps in part because the Covid-19 pandemic has injected more urgency in our 
API-first transformations. 

No matter how large or small your steps, it’s important to view the API-first 
transformation as a journey–one that requires leaders to regularly step back and assess 
how far the organization has come, while always maintaining a shared set of goals that 
will lead to a brighter, more agile future.



79

02Technology  
& Governance



80



Chapter 8 | The Essential Elements of API Technology 81

Whether you’re debating REST or HTTP protocol or OpenAPI or AsynchAPI contracts, 
you have many decisions to make for structuring your APIs and the infrastructure 
supporting them. This chapter will help you make sense of the alphabet soup of API 
technology and choose the solutions right for your organization.

8.1 API Infrastructure
Today’s digital business landscape is defined through a handful of Internet protocols for 
requesting, responding, publishing, and subscribing to machine-readable contracts. 
This toolbox of contracts increasingly defines the backbone of the API economy, and 
developers are rapidly iterating upon it and inventing entirely new dimensions. 

REST, web, or HTTP APIs dominate the conversation when you talk with technologists. 
While these ubiquitous API patterns will continue to be the bedrock in every industry, 
newer, more specialized types of contracts, have emerged to help us manage internal, 
B2B, and B2C operations.

08
The Essential Elements  
of API Technology



82 Part 02 | Technology and Governance

Web-scale businesses use web protocols to move digital resources around, automating 
operations using well-defined digital capabilities. They continue to iterate on the 
experiences that matter to your partners and third-party consumers. However, there is 
another dimension to consider: You need to apply this same discipline to the APIs you 
are consuming each day.

Your infrastructure toolbox needs to be diverse. It must reflect the latest protocols, 
patterns, and standards while aligning with your business goals and your consumers’ 
needs. And your teams need to be educated on the pros and cons of each tool in that 
toolbox. 

As we’ve stated previously, there is no single API solution for your business needs. 
There is a growing suite of API infrastructure that works well in some situations and not 
so well in others. But collectively, these tools can get you 90% of the way to where you 
want to be. Your team needs to do the work to make sure they are aware of the benefits 
and tradeoffs of each piece of infrastructure in your toolbox, and you need the domain 
expertise to properly apply the tools across your operations.

API infrastructure today is contract-driven. That means every API and the infrastructure 
behind it should be defined as a machine-readable contract. API contracts are the 
platform glue for all the infrastructure dependencies across your operations. Without 
them, the experience consumers have with your API resources and capabilities will 
never be quite consistent. And without contracts for the infrastructure behind your 
APIs, you will never be able to operate your digital API factory floor reliably.

Look at your API architecture through the same lens you use to judge your WSDL 
contracts. The architectural decisions you made 20 years ago are still visible across the 
landscape. You will also have to live with the decisions you make today for many years, 
so it’s important to have clear intentions behind the infrastructure you put in place.

8.2 Internet Protocols, API Contracts, 
and Specifications
Various internet protocols are in use across the World Wide Web, allowing regional and 
local area networks to transport digital resources and capabilities around the globe to 
service digital commerce. The most well-known l is the hypertext transfer protocol, or 
HTTP, which is the backbone of the web as we know it., But HTTP is getting a makeover, 
and other leading protocols are also gaining acceptance across the API landscape.



Chapter 8 | The Essential Elements of API Technology 83

HTTP 1.1 - The Hypertext Transfer Protocol, or HTTP, is a protocol for 
distributed, collaborative, hypermedia information systems. It is a generic, 
stateless protocol that can be used for many tasks involved in distributed 
object management systems.

HTTP/2 - HTTP/2 is a major revision of the HTTP network protocol. It was 
derived from the earlier experimental SPDY protocol originally developed by 
Google, then adopted by the HTTP Working Group of the Internet Engineering 
Task Force.

HTTP/3 - HTTP/3 is the third major version of the Hypertext Transfer Protocol 
used to exchange information on the World Wide Web, alongside HTTP/1.1 and 
HTTP/2. HTTP/3 always runs over QUIC, providing a next-generation internet 
approach.

TCP - The Transmission Control Protocol is one of the main protocols of the 
internet protocol suite. It originated in the initial network implementation, in 
which it complemented the Internet Protocol. Therefore the entire suite is 
commonly referred to as TCP/IP.

MQTT - MQTT is a lightweight, publish-subscribe network protocol that 
transports messages between devices. The protocol usually runs over TCP/IP; 
however, any network protocol that provides ordered, lossless, bi-directional 
connections can support it.

The protocol you select when delivering an API will set the tone with consumers for 
what is possible and will provide constraints depending on the patterns employed. This 
will determine what is possible across the API lifecycle, shaping your overall journey and 
business outcomes.

APIs, whether internal or external, are built on these fundamental internet protocols. 
APIs are the next iteration of the web and take advantage of the low cost of internet 
infrastructure to stitch together the digital experiences we plan when defining and 
shaping our businesses. 

HTTP 1.1 provided us with the base we needed to get through the last 25-plus years of 
doing business on the web. HTTP/3 will be the protocol that delivers the future, with 
TCP and MQTT continuing to deliver the industrial-grade networks we need for the 
enterprise applications, systems, and devices that define our physical and digital  
supply chains. These protocols provide us with the transport layer we need to power 
our digital businesses, but there are other contracts and patterns we’ll also need to get 
the job done.



84 Part 02 | Technology and Governance

Understanding the role of API contracts
On top of the protocols and patterns employed by API producers, a variety of machine- 
and human-readable contracts have emerged to help govern not just the technical, but 
also the business and legal aspects of the API producer and consumer relationship. 
These contracts are used to make sure producers and consumers are on the same 
page, providing a single source of truth for each version of an API made available.

Specifications
A handful of specifications have emerged that help us describe the surface area of our 
synchronous and asynchronous APIs. These specifications employ a mix of protocols, 
patterns, styles, and formats in machine- and human-readable formats, which we can 
use to define the contracts available between producer and consumer.

OpenAPI - The OpenAPI specification, formerly known as Swagger, provides a 
machine- and human-readable format often used for describing HTTP 1.1, web, 
or REST APIs. It provides a contract for describing the relationship between 
API producer and consumer.

AsyncAPI - The AsyncAPI specification is a sister specification to OpenAPI, 
but focused on event-driven APIs across HTTP, TCP, MQTT, and potentially 
HTTP/2 and HTTP/3. It provides a contract for describing the relationship 
between publishers, subscribers, and brokers.

JSON Schema - The JSON Schema specification is used for validating the 
models of data sent and received from APIs. It is also used by OpenAPI and 
AsyncAPI as vocabularies for modeling and validating the objects available via 
different types of APIs.

Protocol Buffers - Protocol buffers are Google’s language-neutral, platform-
neutral, extensible mechanism for serializing structured data–think XML, but 
smaller, faster, and simpler. They are often used for high-speed internal APIs 
or B2B APIs for partners.

Collections - Collections are a machine-readable format from Postman for 
describing the surface area of APIs, then executing in service of the API 
lifecycle, providing mock servers, documentation, testing, and other developer 
needs across enterprise API operations.



Chapter 8 | The Essential Elements of API Technology 85

GraphQL - GraphQL is a query language for APIs and a runtime for fulfilling 
those queries with your existing data. GraphQL provides a complete and 
understandable description of the data in your API, giving clients the power to 
ask for exactly what they need and nothing more.

WSDL - Web Services Description Language, or WSDL, is an XML-based 
interface description language used for describing the functionality a web 
service offers. It provides a machine-readable description of how a service 
can be called and what kind of data it returns.

API contracts provide both the technical and the business details of the relationship 
between API producer and consumer, moving everyone to a shared understanding of 
what can be expected with each version of an API. That includes the quality of service 
and the digital resources and capabilities that will be made available. The success of 
each API will depend heavily upon the balance between producer and consumer but 
also upon the business and technical aspects of conducting commerce online.

EXPERT PERSPECTIVE

Contract-First at Goldman Sachs
Chander Shivdasani, Vice President of Goldman 
Sachs’ Marcus banking products and services 
division, recently talked with me on Breaking 
Changes about the important role APIs are 
playing in helping the financial company deal 
with change and modernizing legacy 
operations. When I asked for more details about 

the company’s approach to defining and delivering the next generation of APIs 
with OpenAPI, I learned that they insist on calling it a contract-first approach 
rather than design- or definition-first. With this language, they express the 
importance of a contract-first approach for bringing business stakeholders to 
the table and improving the alignment between their API evolution and business 
objectives.

Goldman Sachs’ contract-driven approach to OpenAPI reveals the role OpenAPI 
plays in defining each business contract established between an API and its 
consumers. This business nuance of defining API contracts is more than just a 
word. It denotes greater alignment between the technical and business aspects 

Chander Shivdasani



86 Part 02 | Technology and Governance

8.3 Using OpenAPI as your Standard Digital 
Business Contract
The OpenAPI specification, formerly known as Swagger, gives you the ability to 
describe the surface area of your HTTP 1.1 APIs using JSON or YAML. OpenAPI provides 
a robust way to describe what is possible with each API, defining the surface area of 
each request and response.

Info - You have a place to define common metadata for an API, such as a 
name, description, licensing, terms of service, and contact information, 
helping to ensure that all APIs have enough metadata available to articulate a 
purpose across the API life cycle.

of API operations, narrowing the divide that commonly exists. These contracts 
provide the language needed to deliver entirely new services while modernizing 
legacy infrastructure, identifying dependencies, and helping Goldman Sachs 
remedy years of technology deficits.  

The API contracts at Goldman Sachs are being used to establish a common 
vocabulary across teams, helping to ensure that everyone is on the same page. 
This contract vocabulary is helping the financial company stabilize, automate, 
and optimize across the API lifecycle and apply consistent governance across 
teams. The contract-driven approach is also helping the firm power federation to 
deliver existing business services and respond quickly to emerging market 
needs. A federated API approach benefits from centralized guidance and 
governance, while keeping teams autonomous and helping the company 
navigate geographic and regulatory concerns. 

Being contract-first is helping Goldman Sachs iterate and innovate, but also 
allows it to respond to privacy regulations like GDPR and navigate data 
sovereignty, all while embracing a federated approach to doing business across 
multiple geographies. While there is still a lot of work to be done in modernizing 
operations, by bringing more business stakeholders into the conversation, the 
contract-first approach is allowing Goldman Sachs to move the enterprise 
forward, while l responding to new and innovative market opportunities. As a 
result, the well-established financial institution can behave more like a fintech 
startup, showing the impact that an API-first transformation can have in helping 
enterprises deal with any change that might come their way.



Chapter 8 | The Essential Elements of API Technology 87

Servers - You include a list of servers for every instance of API, possibly 
across multiple regions or stages of development. That allows consumers to 
quickly find an instance of an API they can use to meet their needs and apply it 
as a resource.

Paths - API consumers can take different paths to access resources and 
capabilities, similar to browsing the web. But in this case, they are navigating 
the API landscape, looking for the resources and capabilities needed to power 
applications and integrations.

Operations - Define the specific operations that can be accomplished using a 
specific path. Operations provide the ability to read, write, update, delete, and 
perform other actions on API resources, setting different capabilities defined 
as part of each API in motion.

Parameters - Provide a defined set of parameters that can be used to change 
the state of API responses. Provide key/value pairs for common things like 
pagination or search, but be specific, depending on the objects returned with 
API responses.

Responses - Describe the HTTP Status Codes, headers, and media types 
returned with each response, helping the consumer understand the structure 
and state of the response and providing consumers with as much information 
as possible about responses.

Schema - Provide JSON Schema descriptions of request and response 
bodies, allowing the responses to be validated and helping automate 
validation at the gateway to ensure the highest quality possible for consuming 
APIs within any application.

Security - Describe the type of authentication required for accessing an API 
and provides a machine-readable description of the API keys required. OAuth, 
JWT, and other types of security protocols help automate the authentication 
layer of API usage within clients.

OpenAPI isn’t just for documentation or code generation. It is the standard business 
contract you apply to every digital resource you use in applications and integrations 
across the enterprise. It provides teams with a common vocabulary to describe the 
relationship between API producers and consumers.



88 Part 02 | Technology and Governance

8.4 Mapping the Event-Driven Enterprise 
with AsyncAPI
The AsyncAPI specification provides the ability to describe the surface area of your 
multi-protocol APIs using JSON or YAML. The open source specification provides a 
robust way to describe what is possible with each API, defining the surface area 
messages and channels. It can then be used as the source of truth, showing what is 
possible when publishing and subscribing to each asynchronous API.

Info - Provides a place to define common metadata for an API, such as a name, 
description, licensing, terms of service, or contact information, helping to 
ensure all APIs have enough metadata available to articulate a purpose across 
the API life cycle.

Application - An application is any kind of computer program or group of 
programs, allowing for the view of a producer or a consumer, a microservice, 
an IoT device (sensor), or possibly a mainframe process that will be publishing 
and subscribing to messages.

Producer - A producer is a type of application connected to a server that 
creates messages and addresses them to a channel or publishes them to 
multiple channels, depending on the server, protocol, and use-case pattern 
applied as part of an API implementation.

Consumers - A consumer is a type of application connected to a server via a 
supported protocol that consumes messages from a channel or multiple 
channels, depending on the server, protocol, and use-case pattern in an API 
implementation.

Message - A message is the mechanism by which information is exchanged 
via a channel between servers and applications.The payload containing the 
data, defined by the application, MUST be serialized into JSON, XML, Avro, 
binary, or another format.

Channel - A channel is an addressable component made available by the 
server for the organization of messages, enabling producer applications to 
send messages to channels and consumer applications to consume messages 
from channels.



Chapter 8 | The Essential Elements of API Technology 89

Protocol - A protocol is the mechanism (wireline protocol OR API) by which 
messages are exchanged between the application and the channel. Example 
protocols include, but are not limited to, AMQP, HTTP, JMS, Kafka, MQTT, 
STOMP, WebSocket.

AsyncAPI provides business contracts for the many different channels you can publish 
or subscribe to across the enterprise, defining the events that matter to operations 
while also helping to ensure that the events and the messages passed along are 
well-defined and make sense to consumers. 

As the API landscape has expanded across multiple protocols, AsyncAPI has emerged 
to quantify the landscape, helping us document, mock, test, and manage this growing 
layer that is a part of how we run our business. It ensures that the enterprise is 
delivering and responding to the most meaningful events.

8.5 Modeling and Validating Your Business 
Using JSON Schema
The JSON Schema specification provides a machine- and human-readable way of 
describing digital objects used as part of API requests and responses, as well as the 
messages we publish and subscribe to our more asynchronous APIs. JSON Schema 
allows us to describe the structure of our digital resources and capabilities so that we 
can validate them during development and production.

Objects - Objects are a way to define digital structures, providing a machine-
readable way to describe meaningful concepts exchanged online using 
different types of APIs and passing data in a way that makes it easy for teams 
to have a shared understanding.

Properties - The individual characteristics of an object, providing the details 
that give an object meaning and value. Properties may describe the name and 
email of a person object, or the name and description of a product object, 
providing a logical set of properties that applications can understand.

Property Names - Each property has a name, allowing each individual 
characteristic of an object to be described in a way that makes sense to 
consumers, providing a shared meaning of a specific aspect of a digital object 
available via an API.



90 Part 02 | Technology and Governance

Property Description - Each property can also have a description, providing 
much more detail about what the object property will contain. Descriptions 
convey the meaning and purpose behind why the property exists, and how API 
consumers can use it in applications.

Property Type - Allowing each property to be defined as a string, number, 
object, or other common or custom type, formally articulating what it can be 
expected to contain, helping us to be very strict or loose when it comes to 
making data available in objects.

Property Patterns - Patterns allow for regular expressions to be used to 
precisely articulate what a property should contain, providing a universal way 
of precisely describing the contents, ordering, and structure of the data 
available via each object property.

Required - Defining a list of the properties for each object is required 
whenever you are moving objects around synchronously or asynchronously via 
APIs, helping to describe the minimum amount of information needed to define 
an object made available.

JSON Schema is how the digital bits we pass around the web each day get validated 
behind the scenes, making sure the requests we make and the response received meet 
the expectations of both API producers and consumers, giving us the real-time 
validation we need to reliably do business at scale.

Both OpenAPI and AsyncAPI use JSON Schema to model the payloads of both our 
synchronous and asynchronous APIs, providing a rich way to define the digital 
resources and capabilities of the enterprise. JSON Schema validates that business is 
happening as we expand at scale across our operations.

8.6 Internal Operational Contracts as 
Protocol Buffers
Protocol Buffers (Protobuf) is a free and open-source cross-platform data format used 
to serialize structured data. It is useful in developing programs that communicate with 
each other over a network or for storing data. The method involves an interface 
description language that describes the structure of some data and a program that 
generates source code from that description for generating or parsing a stream of bytes 
representing the structured data.



Chapter 8 | The Essential Elements of API Technology 91

Serialization - Protocol buffers provide a serialization format for packets of 
typed, structured data that are up to a few megabytes in size, suitable for both 
ephemeral network traffic and long-term data storage, and extending with 
new information.

Services - A service is an individual system that supplies a digital resource or 
capability, providing a granular unit of business value that can be used 
internally within the enterprise or made available to partners in a secure but 
highly performant manner.

Messages - Messages are digital communications for sending serialized and 
structured, record-like, typed data in a language-neutral, platform-neutral, 
extensible manner, providing a highly efficient way of communicating between 
systems within the enterprise and with partners.

Message Types - Protocol Buffers allow you to define any type of message 
you will need to make your digital resources and capabilities available, giving 
you full control over how data will be structured, interpreted, and consumed by 
internal and partner developers.

Language Compatibility - Messages can be read by code written in any 
programming language, providing a high-performant way to make data 
available across many different platforms. A robust add-on ecosystem allows 
for a long tail of integrations.

Protocol Buffers provide a solid contract for defining the relationship between your 
internal services, allowing for large volumes of high-quality and well-defined data to be 
exchanged across the enterprise. In some cases, gRPC is used externally with partners, 
providing high-volume business-to-business services outside the enterprise firewall.

Protocol Buffers are a very strict and efficient approach to delivering industrial-grade 
digital plumbing for the enterprise. But don’t confuse these APIs with the simpler web 
APIs that are the fundamental building blocks of internal and external APIs. Make sure 
you are right-sizing your approach to APIs, and possess a clear definition of what it will 
take to deliver what your API consumers need before choosing gRPC as the solution.

Not all developers will find working with gRPC intuitive, so make sure your teams have 
the right education and skills to be effective when producing and consuming gRPC 
APIs. When it comes to the right implementations, gRPC is very effective at delivering 
high availability and powerful APIs. But in the wrong situation, they can be overkill and 
introduce more friction for developers.



92 Part 02 | Technology and Governance

8.7 Making the API Lifecycle Executable
Using Collections
Postman collections are a machine-readable specification for saving API requests in a 
portable, executable, and documented way, allowing one or many API requests to be 
organized by folder, then shared or published for use by others. Collections provide an 
executable unit of value as defined by each API’s source of truth. They are made 
available in a format that can be used to document, mock, test, secure, and automate 
many different APIs.

Folders - Each collection has the ability to define one or many folders and 
organize API requests into each folder, making collections more intuitive and 
easier to use.

Authentication - Collections allow the authentication to be defined for any API 
consumed, providing most of the top authentication formats used to secure APIs.

Documentation - You can document your APIs, as well as the tests, 
automation, visualizations, and other use cases for collections, ensuring API 
operations are documented.

Parameters - The parameters and default values can be provided for each API 
request, helping define query and path parameters that shape each API 
request and response.

Headers - Collections allow for HTTP headers to be passed along with each 
request, shaping the transport of each API request and response made with 
collections.

Body - Enabling the ability to add JSON, XML, Text, and other types of data 
payloads as a body of the request, securely sending data (when encrypted) as 
part of a request.

Responses - The details of a response, including the HTTP status codes, 
headers, network information, response time, and the other technical details 
of the API response for APIs.

Scripts - Collections allow for folder level, as well as pre-request and post-
request scripts to be applied, providing scripts that get executed when 
collections are executed manually.



Chapter 8 | The Essential Elements of API Technology 93

OpenAPI and AsyncAPI provide a source of truth for each API. A collection provides a 
derivative of that truth for a specific stop along the API lifecycle. This relationship 
provides a versatile way of generating documentation, mock servers, tests, and other 
essential building blocks.

Collections can be combined with CSV or JSON sets of data to represent specific 
business use cases and outcomes. Pairing collections with data helps to ensure that 
each individual API contract accurately reflects each and every possible business 
outcome associated with the contract. It allows for new levels of reliable automation 
across enterprise API operations.

Using collections to automate the API lifecycle is the only way we will be able to 
properly scale our operations from the hundreds or thousands of APIs we depend on 
today to what we will need tomorrow.

8.8 Embracing your Legacy Web Services 
Using WSDL
WSDL is an XML format for describing network services as a set of endpoints operating 
on messages that contain either document-oriented or procedure-oriented information. 
The operations and messages are described abstractly, then bound to a concrete 
network protocol and message format to define an endpoint. While few new APIs use 
WSDL, they are ubiquitous for web services across common enterprise systems.

Documents
WSDL contracts are defined as documents, giving flexibility for the type of document 
and the message, as well as the port type, and binding defining access and 
communication.

Types - Defines the XML Schema data types used by the web service, 
specifying a specific, existing, and well-known schema that provides a shared 
understanding.

Message - Defines the data elements for each operation, allowing just the 
contents of the API request to be accessed, focusing on only the payload, not 
transport.

Port Type - Describes the operations that can be performed and the 
messages involved, shaping what type of communication is used for 
communicating.



94 Part 02 | Technology and Governance

Binding - Defines the protocol and data format for each port type, setting the 
stage for how API communication will occur, with the desired protocol and port.

Port type
The port type element defines a web service, the operations that can be performed, 
and the messages involved, providing for a very versatile way of delivering upon WSDL 
contracts.

One-Way - The operation can receive a message but will not return a 
response.

Request-Response - The operation can receive a request and will return a 
response.

Solicit-Response - The operation can send a request and will wait for a 
response.

Notification - The operation can send a message but will not wait for a 
response.

While most greenfield APIs will not be using SOAP as a pattern, it is likely we will still see 
web services that use SOAP and expose a WSDL contract for the next fifty years. This 
longevity will make it an essential part of the API-first transformation occurring across 
our organizations and the industries we operate in. WSDL will always describe our 
legacy infrastructure, but it is also an important part of our transformation, something 
we’ll be emulating and learning from for years to come.

8.9 Investing in the Architecture your 
Operations Need
It can be very tough to keep up with the pace of change in software delivery today. It 
can be very challenging to develop the awareness, skills, and discipline you need for 
individuals, a team, and the enterprise. Each organization has its own history, culture, 
constraints, and trajectory, but there is always a kind of zeitgeist in the architecture 
powering APIs, which in turn shapes how we deliver applications and integrations. 

Just beneath the desktop, web, mobile, and device applications we depend on daily to 
do business, REST or web APIs dominate, providing the essential resources, 
capabilities, and experiences our users expect. This is where you always begin with 
your API-first transformation, but a healthy transformation will also include a diverse set 
of protocols and patterns that are needed in the diverse range of situations the 



Chapter 8 | The Essential Elements of API Technology 95

enterprise is struggling with across the digital landscape. As with the overall strategy 
for your API-first transformation, there is no one approach to investing in and leveraging 
architecture to deliver your APIs.

It is very common for each iteration of API infrastructure to declare that it is replacing 
what came before, but most of the time, the latest API architecture is either augmenting 
or living side-by-side with existing, more established architectures. One way to 
navigate these cycles of evolution is to establish a strategy for defining and guiding 
your API-first transformation. Otherwise, you might find yourself with blinders on 
regarding any single piece of API infrastructure that comes along. I see this problem 
today in conversations about REST vs. GraphQL vs. event-driven and other areas when 
the real conversation should be about REST and GraphQL and event-driven. 

There are valid pros and cons to each of the leading API architectural patterns, and to 
effectively operate your enterprise, you need to be aware of as many patterns as 
possible, developing your team’s knowledge and muscles across as many of them as 
you can. There are proven patterns for a variety of business use cases and industries, 
and you should avoid trying to reinvent the wheel and embrace what already works well. 
RESTful APIs are always the base of enterprise architecture, but GraphQL, Websockets, 
gRPC, and other proven patterns can be used to stitch together the digital quilt 
enterprises need to power their digital experiences at scale around the globe.

This API-First Transformation book will provide an overview of the API architectures 
that matters most today and give you the building blocks for applying them as part of 
your strategy. However, it is up to you to build muscle memory and discipline across 
your teams to maximize your infrastructure investments.



96 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

There are many tools for configuring and integrating your APIs. In this chapter, we will 
describe some of the most important, explaining their advantages and disadvantages 
to help guide you to the best choices for your enterprise. We’ll also take a peek at 
up-and-coming technologies like machine learning and real-time data analysis, which 
are rapidly changing the corporate API landscape.

9.1 The Most Important API Patterns 
There are many common patterns in use across the API sector, but the foundation of the 
modern API toolbox continues to be REST. with GraphQL, WebSockets, and increasingly 
gRPC added to the mix. The line between pattern and protocol is often a blurry one, but 
there are a handful of well-known patterns that act as the cornerstone for API 
applications and integrations, depending on which industry or layer of the enterprise an 
API is operating in. While there are other patterns to consider, these five API matter the 
most to enterprise organizations today.

REST - Representational state transfer is a software architectural style created 
to guide the design and development of the architecture for the World Wide 
Web. REST defines a set of constraints for how the architecture of a distributed 
system should behave.

09
Patterns and Protocols



Chapter 8 | The Essential Elements of API Technology 97

GraphQL - GraphQL is a query language for APIs and a runtime for fulfilling 
those queries with your existing data. GraphQL provides a complete and 
understandable description of the data in your API. It gives clients the power 
to ask for exactly what they need and nothing more.

WebSockets - WebSocket is a computer communications protocol, providing 
full-duplex communication channels over a single TCP connection. The 
WebSocket protocol was standardized by the IETF as RFC 6455 in 2011, and is 
used heavily for financial APIs.

gRPC - gRPC, also known as Google Remote Procedure Call, is an open-
source remote procedure call system initially developed at Google in 2015 as 
the next generation of the RPC infrastructure. It has since become a desired 
patent used internally with HTTP/2.

Microservices - A microservice architecture–a variant of the service-oriented 
architecture structural style–arranges an application as a collection of loosely-
coupled services. In a microservices architecture, services are fine-grained 
and the protocols are lightweight.

Webhooks - Webhooks use APIs to trigger events. Instead of making calls to 
APIs, webhooks occur when different events occur across operations, pinging 
other systems or sending data to help make actions more event-driven and 
real-time. With simple web APIs.

Some of these patterns merely provide a style to follow. Others are standardized 
formats and protocols that provide a set of agreed-upon constraints. You can apply a 
specific protocol or a mix of transport protocols to consumers, brokers, and other 
stakeholders.

Finding the right pattern for the job
Each of these patterns has strengths and weaknesses, but collectively they provide you 
with a rich and increasingly proven set of tools you can consistently use across teams. 
A diverse mix of standardized APIs allows you to do business at the scale and speed 
you need. Make sure your teams get to know each of these API patterns, then regularly 
exercise their knowledge on APIs in production until they find which patterns work best 
in different situations.

It can be easy for technologists to get caught up in the API patterns they have most 
experience with, or the ones that work for their particular applications and integrations. 
However, as an organization, it is important to Invest in a diverse API toolbox. That way 
you avoid technological dogma and apply the pattern that makes the most sense for the 



98 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

job at hand. Having a diverse set of patterns in your API toolbox will help ensure that 
your enterprise is as adaptable as it can possibly be.

9.2 Using REST and GraphQL
Defining essential enterprise resources using REST
Representational State Transfer, or simply REST, is the dominant pattern across 
enterprise API operations because of its simplicity and use of the HTTP protocol. REST 
provides a foundational and ubiquitous way for making digital resources and capabilities 
available across the widest possible range of developers in the desired applications and 
integrations. REST brings a common set of characteristics that can be easily applied 
across hundreds or thousands of APIs.

HTTP - RESTful APIs are built on top of the same technology that brings us the 
World Wide Web, making them a low-cost and widely understood transport 
protocol for making digital resources to developers across almost any 
programming language.

Uniform - Delivering uniform interfaces for consumers makes onboarding and 
integration of RESTful APIs much easier for API consumers. They can readily 
apply the value represented in the enterprise API catalogs they have access 
to.

Resources - REST focuses on uniformly defining digital resources, providing 
the raw ingredients that can be used in digital applications. It provides the 
vocabulary developers need for delivering meaningful use cases.

Methods - RESTful APIs take advantage of HTTP methods to help standardize 
the actions you can take with the digital resources defined, providing a 
common vocabulary for complementing resource-oriented nouns with useful 
verbs.

Synchronous - By using HTTP, RESTful APIs, you emulate the web, allowing 
applications and integrations to make requests for digital resources and wait 
until they receive a response, providing users what they need at the moment.

Stateless - Simple APIs using a RESTful pattern do one thing and do it well, 
without requiring wider awareness of the state of the application making the 
API call. They leave the state of the user experience to be defined by the 
application in question.



Chapter 8 | The Essential Elements of API Technology 99

Cacheable - Since RESTful APIs use HTTP, they can benefit from the 
capability of web documents, significantly improving the performance of 
applications that may be requesting data, content, and other media that may 
not change very often.

Simple - REST works as an API pattern because it is simple, making digital 
resources, capabilities, and experiences available to consumers in a way that 
can be discovered, understood, and put to use with the least amount of work 
possible.

REST does have limitations. It won’t be the right solution for every project, but it does 
provide the essential baseline for API operations. REST APIs are a natural evolution of 
the web, but instead of making digital resources and capabilities available to humans 
via a browser, they make these same digital resources available via mobile and desktop 
applications. They also allow other systems to use these resources in different types of 
automated applications and integrations.

Making the data landscape actionable using GraphQL
GraphQL provides the ability to apply queries, mutations, and subscriptions defined 
within a query language to synchronous and asynchronous APIs. GraphQL adds another 
type of contract to our API toolbox, allowing us to offer a very flexible query language 
enabling developers to get the data they need to use in any application.

In conversations, I have found enterprise organizations using GraphQL to support their 
mobile and single-page applications. I also see them deploying an internal graph to 
abstract many different APIs and data sources into a single layer of the enterprise that 
developers can query and work with.

Operations - You have a document describing various types of operations, 
such as queries, mutations, subscriptions, and any fragments, that define 
what is possible with the API.

Document - GraphQL has two types of documents: execution documents and 
schema documents. They determine what types of queries are possible and 
how consumers can use them.

Selection Sets - Located within an execution document, selection sets are 
sets of fields that make up the content contained within curly braces, 
describing the desired fields associated with a query.



100 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

Fields - Fields are object-specific attributes that can be requested and return 
a value, providing the atomic unit of any combination of data made available 
via an API.

Fragments - There are three types of fragments. Named fragments allow us to 
reuse fields, Type conditions allow us to conditionally select fields, and Inline 
fragments don’t have a name defined inside the selection set.

Directives - There are four directives defined in the spec: @skip, @include,  
@specifiedby and @deprecated. They change the way a section of the 
document is executed.

Mutations - Different types of operations enable different state changes for 
data, providing the ability to read, update, and achieve other states.

Subscriptions - These are long-lived requests that allow the server to send 
the client events as they happen, allowing consumers to subscribe to the data 
they need.

GraphQL is an optimal solution when you have a large amount of data with a wide 
surface area and developers familiar with GraphQLwho are building a variety of 
applications with specialized needs for specific domains of data. GraphQL provides you 
with a powerful API layer for your distributed enterprise landscape, augmenting your 
RESTful and other types of APIs. That helps you stitch together all data in a meaningful 
API layer.

9.3 Using WebSockets and gRPC APIs
Delivering more real-time APIs using WebSockets
As explained above, WebSocket is a computer communications protocol standardized 
by the IETF in 2011 and providing full-duplex communication channels over a single TCP 
connection. WebSocket is distinct from HTTP, but is designed to work over HTTP by 
using a handshake that uses an HTTP Upgrade header to change from the HTTP 
protocol to the WebSocket protocol using TCP.

HTTP - WebSockets’ relationship with the HTTP protocol makes it something 
that compliments RESTful APIs with a higher volume, speed, and real-time 
alternative, helping shift APIs into a higher gear to deliver what consumers 
demand.



Chapter 8 | The Essential Elements of API Technology 101

TCP - When API consumption requires a much higher volume of real-time 
connections, it makes sense to switch from HTTP to TCP, providing a much 
more industrial-grade pipe for moving digital resources where they are needed 
and responding faster to events.

Asynchronous - WebSockets provide the ability to publish and subscribe to 
digital resources in real time, allowing consumers to publish and subscribe to 
messages in real time by requesting and waiting for a response to get what 
they need.

Real Time - Interactions with WebSocket APIs occur in real-time, allowing 
consumers to publish and then subscribe to events as they are happening, 
providing faster access to a firehose of information they need to support 
applications.

Event-Driven - WebSocket APIs do not require consumers to consciously 
make requests when they want information. They can just subscribe to events 
that are already occurring across operations, making the API experience more 
impactful.

Ad Hoc - It is common for WebSocket APIs to be used as a catch-all for 
whatever schema you might need across the enterprise, making for a pretty  
ad hoc and sometimes chaotic mix of schema from many applications and 
integrations.

Volume - WebSocket APIs are definitely designed for noisier APIs, working 
well for financial, market-related, and other real-time data scenarios. They 
provide a set of garden hoses or fire hoses consumers can publish and 
subscribe to for their work.

Scale - This API pattern is something you can use to scale some of your 
higher- volume API channels, augmenting other patterns in your API toolbox. 
You can use it for a more precise set of applications to meet the needs of a 
precise set of consumers.

A WebSocket API provide an effective way for you to stand up a private, partner, or 
public API that handles a significant volume of specialized or ad hoc API traffic. But 
most WebSocket implementations lack schema normalization, management, and 
observability, making them prime targets for standardization before they become a 
sprawling landscape of schema noise.



102 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

You will find WebSockets in the financial sector, but their use is rapidly expanding 
across other industries, adding a publish and subscribe layer on top of the ongoing 
enterprise chaos.

Delivering the business backbone using gRPC APIs
gRPC is an open-source, high-performance remote procedure call (RPC) framework 
that can run in any environment, efficiently connecting services in and across data 
centers with pluggable support for load balancing, tracing, health checking and 
authentication. It is a solution for delivering industrial-grade distributed computing to 
devices, mobile applications, and browsers to backend services. Right out of the box, 
gRPC brings numerous benefits to your operations and your approach to delivering 
APIs.

HTTP/2 - HTTP/2 is the next iteration of the HTTP protocol.Derived from the 
SPDY protocol developed by Google, it has been the preferred choice of 
transport for gRPC, though that will likely shift to HTTP/3 now that it is 
becoming ready for prime time.

Protocol Buffers - gRPC uses Protocol buffers, Google’s language-neutral, 
platform-neutral, extensible mechanism for serializing structured data, to help 
deliver extremely efficient API resources for use in a variety of applications.

Performance - gRPC is known for being very performant, leveraging the latest 
protocols and serialization approaches to ensure that APIs function as the 
high-speed backbone for internal and B2B systems across any business 
domain.

Code Generation - With gRPC, you get a variety of client code out of the box 
in all of the top languages, providing high-quality code for developers to use in 
developing their applications using the industrial-grade API pattern.

Strict - gRPC makes it difficult to deliver sloppily-designed APIs, providing a 
strict approach to defining the contracts that govern API producers and 
consumers. That helps stabilize the APIs we depend upon across the 
enterprise so we can offer reliable services.

Streaming - Like WebSocket and other real-time APIs, gRPC streams data, 
providing an always-on connection for applications to use when sending or 
receiving high volumes of data as it is created, published, and made available 
via APIs.



Chapter 8 | The Essential Elements of API Technology 103

Robust - gRPC is your backbone API infrastructure, providing what you need 
to connect your critical systems. It offers the performance and reliability you 
need for your most important, revenue-driving business operations.

Internal - If you have the resources for it, using gRPC makes sense for 
powering your internal API infrastructure with some possible external partner 
instances. But mostly, gRPC should provide the API backbone you need to 
drive the core of your operations.

gRPC provides a very solid technical solution for delivering and maintaining 
infrastructure and backbone APIs within the enterprise and possibly with partner and 
B2B solutions. gRPC is not an entry-level pattern like REST. While it can provide 
streaming APIs like WebSockets, gRPC is a much stricter and more disciplined approach 
to delivering API infrastructure, providing yet another solid pattern you can apply as 
part of your API-first transformation.

9.4 Decomposing and Decoupling with 
Microservices
The benefits of APIs have manifested in many ways but few have made an impact close 
to that of microservices, which have redefined the enterprise. The microservices 
journey has helped us understand who we are as organizations and provided the 
vocabulary for defining the technical, commercial, and human elements of doing 
business in The Internet Age. Microservices have helped us decompose the monolithic 
business infrastructure that has accumulated over the last few decades and begun to 
evolve our operations.

Composability - Microservices are designed to be stitched together and 
consumed in a variety of ways meeting a mix of business needs. They provide 
the digital building blocks enterprises need to operate, grow, and adapt to 
business needs.

Templates - Having standardized templates for designing and deploying 
microservices helps ensure that microservices are consistent, intuitive, and 
easy for consumers to use, no matter which teams were responsible for 
bringing them to life.

Synchronous - Synchronous microservices provide a simple and intuitive way 
to deliver solutions for a single digital resource or capability, providing a very 
modular and composable way for developers to implement the digital services 
needed.



104 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

Asynchronous - Asynchronous microservices provide a more event-driven 
approach to delivering resources and capabilities, allowing developers to 
publish and subscribe to a variety of channels that help define business 
operations.

Risk - There is risk involved with breaking digital resources and capabilities 
into very modular and potentially distributed microservices.Teams should be 
made aware of what is needed when managing a potentially sprawling 
landscape of digital services.

Reward - With the right enablement, robust microservices offer a big payoff  
in flexibility and agility. They can make enterprise operations more nimble, 
responding to any changes that may come along.

Lifecycle - Delivering hundreds or thousands of APIs consistently across an 
organization requires a common and well-known life cycle to be employed 
across teams, ensuring everyone is on the same page for delivering and 
iterating upon APIs.

Microservices are not a silver bullet that will solve all our enterprise challenges, but they 
do provide a proven approach for breaking up and reorganizing our digital resources 
and capabilities across business domains. Microservices give teams a clear definition 
for a class of API that is only used internally, powering what they need to deliver APIs, 
applications, and integrations.

9.5 Making Operations More Event-Driven 
with Webhooks
API requests trigger some sort of event in a system adding or updating data. Webhooks 
do the reverse, making a call to any URL when one of these events occurs. A webhook 
is the trigger that results when different types of API requests or message publishing 
occurs, which can set in motion any other API-driven action, making operations more 
event-driven.

URL - Each webhook has a URL property, allowing it to have the address of the 
resulting call that should be made when each event is triggered, automating 
any workflow.

Payload - A payload provides data to send with each event triggered, sending 
static or dynamic data to the URL for each webhook and adding more context 
to the event.



Chapter 8 | The Essential Elements of API Technology 105

Event - Events provide a meaningful name and description of each moment 
triggered when an API call is made.

Analytics - Webhooks require the ability to see events that have been 
triggered, including errors, retries, and other important information needed to 
manage events at scale.

Emails - It is common to allow emails to be sent to one or many addresses 
when an event is triggered, adding another layer of system or human 
messaging.

Logging - Like other API infrastructure, the logging of webhook calls is a 
common part of system operation, providing a record of every webhook 
transaction that occurs.

Notifications - For some events, there may be an additional need to send a 
notification using another API, or some native application mechanism.

Retry - Not all webhooks will execute successfully, so it is common to build in 
the ability to retry one or many times, allowing outcomes to be eventually 
realized.

Webhooks are one of the most useful but overlooked and underutilized tools in the 
toolbox. They are the poor man’s event-driven architecture. Like APIs, webhooks use 
simple, low-cost web infrastructure, but they use it to help make APIs more resilient and 
event-driven.

The most common way webhooks are used is as a relief valve for API producers when 
API consumers poll an API too many times. A webhook tells API consumers to stop 
requesting an API when looking for new or updated information, indicating we’ll tell you 
when something changes or when a specific event occurs. 

Webhooks can make operations much closer to real-time with very few additional 
resources and skills required. With proper management tools and analytics, API 
providers can significantly improve the overall efficiency of their API operations.



106 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

EXPERT PERSPECTIVE

A pragmatic view of API design at  
Domino’s Pizza

One of the trickiest stages of the API life cycle is 
deciding how to design our API resources, 
capabilities, and experiences. It is anxiety-
inducing to navigate all of the dogma and 
opinions even for a single API design pattern like 
REST, let alone making your way across multiple 
protocols and patterns like WebSockets and 

GraphQL. So I was very pleased to learn from James Pozenel, Solution Architect 
at Domino’s Pizza, about the company’s very pragmatic approach to API design. 

Few debates about API design are more heated than those about how to name 
and order your API paths. RESTful API design, which uses HTTP, provides 
simple, intuitive names for URL paths (i.e., “/images” or “/books”). Then you use 
HTTP methods like GET, POST, PUT, and DELETE to obtain, add, update, or 
delete your data. This methodology is widely known as CRUD APIs (Create, 
Read, Update, and Delete), and provides the fundamental building blocks we 
use for delivering API resources. The challenge is that GET, POST, PUT, and 
DELETE won’t give you verbs rich enough to articulate every capability and 
experience you are looking to deliver with your digital resources.

The RESTafarians who have dictated how we should design our APIs have 
opposed mixing noun API resources with complex verbs using the URL. 
However, James and his team put a lot of thought into the pros and cons of 
adding complex verbs to noun resources like “/images/upload,” “/book/publish,” 
or in the case of Domino’s, “/pizza/delivery.” REST dogma tends to emphasize 
embracing the constraints of REST, so James is breaking the rules. But that is 
fine. James’ team has found a much richer vocabulary for describing the digital 
resources Domino’s needs to get business done globally while continuing to 
evolve and iterate on the digital capabilities and experiences they need to 
dominate the pizza conversation around the world. 

This pragmatic approach to designing APIs gave James’ teams a much richer 
vocabulary and allowed them to add a role-based access control layer, 
leveraging HTTP paths to determine which capabilities and experiences 
consumers have access to. This domain-driven approach to security, combined 

James Pozenel



Chapter 8 | The Essential Elements of API Technology 107

9.6 Synchronous and Asynchronous APIs
APIs provide a way for humans to interact with each other. They are also the systems 
we depend upon to talk to each other on our behalf. As shown by the diverse range of 
API architecture listed above, different types of API-driven experiences dictate different 
types of interactions between our applications and integrations. In a digital world, API 
interactions are usually synchronous or asynchronous, setting and creating exactly the 
experience consumers are looking for in their applications.

Most of the web resources we use each day are defined as synchronous API 
interactions. A human consciously makes a request via an application for some data, 
content, media, or other digital resource. As we navigate our way through websites and 
mobile applications, we click buttons and links, or swipe and use other gestures to make 
API requests, which synchronously wait for a response to be fulfilled. These activities all 
happen behind the scenes of the websites and applications we use, and are 
orchestrated into a single digital experience.

When we need more real-time experiences in our applications, we choose 
asynchronous APIs, which allow applications to publish messages to APIs via channels 
and subscribe to channels to receive the messages needed. These asynchronous 
approaches allow for more seamless and engaging interactions, especially for high-
volume streams of data that change frequently. Asynchronous API patterns are ideal for 
powering event-driven experiences. They help keep data segmented in different 
channels, bringing more order to the high volumes of information that will be published 
and subscribed to.

Synchronous and asynchronous API interactions each have strengths and weaknesses 
in powering applications. It is common for enterprise organizations to lay a base of raw 
digital resources and capabilities using synchronous APIs and microservices but then 
deliver richer, more real-time experiences using asynchronous APIs. It is also important 

with the company’s pragmatic approach to API design, makes for a very rich, 
secure, and flexible way of delivering digital capabilities and experiences. The 
company’s approach gives it a flexible way of defining what the API-first 
transformation looks like for a physical business operating across the globe  
to make sure pizza is delivered to homes and businesses. It can be easy to  
get caught up in API design debates, but if you focus on what your business 
needs and what matters to your consumers, you will find the balance you need 
to succeed.



108 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

to remember that asynchronous APIs can have real-time characteristics via 
WebSockets and other protocols and patterns but also via simpler and lighter-weight 
webhooks. Teams should empathetically consider the needs of API consumers and 
decide whether synchronous or asynchronous APIs would be best.

If you are unsure which type of pattern is most appropriate for your applications, begin 
with synchronous. You can always begin with a layer of simple web APIs, then augment 
them with webhooks when APIs end up with a higher volume of data and polling from 
consumers. Unless you have definitive examples demonstrating how asynchronous 
patterns will benefit your applications, you should start with simple and much lower-
cost synchronous APIs using HTTP. You can evolve and iterate upon your needs as 
demand grows.

Synchronous interactions
The web allows us the ability to request HTML pages via URLs and receive a response 
that contains what we are looking for. It was a low-cost approach that has been applied 
to the ability to synchronously GET, POST, PUT, or DELETE digital resources and 
capabilities via the internet. 

Request
Every synchronous API interaction has a base set of properties that help keep 
resources secure. They also allow consumers to control the transport of their requests 
and tailor the requests to their needs, while sending data and media along as part of the 
body of each request.

Authentication – Require everyone making a request to provide 
authentication, ensuring that everyone using an API is supposed to be using it 
and keeping your environment secure.

Parameters - Allow each request to be customized by providing a set of 
parameters along with each request, transforming the response the API 
consumer is looking for.

Headers - Define and shape the transport of the request by setting the 
headers of the request used by the network and the server to handle the 
request and response.

Body - The machine-readable XML or JSON request body is sent as part of the 
request, providing the information submitted with each request.



Chapter 8 | The Essential Elements of API Technology 109

Synchronous API requests provide a simple and low-cost way to request data, content, 
media, and other digital resources, helping standardize and scale the way API 
consumers access and pull digital resources via an interface that makes sense 
worldwide.

Response
Each synchronous request has a response, returning the data, content, and media 
requested by the API consumer and possessing an HTTP status code to communicate 
success or failure.

Status Code - Standard HTTP status codes articulate the success or failure of 
a request in a way that any machine can be programmed to understand during 
handling.

Headers - The headers of the request define how the transport and shaping of 
the request was handled, allowing for the receiving system to understand how 
it arrived.

Body - The response data or message returned as part of the API request 
returns JSON or XML code that can be used in any application or integration 
using the API.

Responses return what each consumer was requesting, providing the raw data, 
content, or media that can then be rendered in applications and system-to-system 
integrations.

Asynchronous interactions
When you are looking for a more real-time streaming experience for applications, you 
should consider asynchronous interactions to deliver the experiences consumers 
expect.

Publish 
Asynchronous APIs enable publishing messages to a particular channel via an 
asynchronous connection. That provides a robust way to publish large volumes of data 
via messages to a channel. 

Protocols - We select HTTP, HTTP/2, TCP, MQTT, or some other common 
protocol that is used for an application to asynchronously publish data to 
internal systems for wider usage.



110 Part 02 | Technology and Governance Chapter 9 | Patterns and Protocols

Channel - We publish messages to a specific topic (sometimes called a 
channel) to provide a context for each message published as part of the 
application using each API.

Message - The JSON or XML message that is published submits information 
to a system asynchronously, making it available for consumption by other 
systems via asynchronous API.

Schema - The schema is the structure of the message, standardizing how 
data is being published to the asynchronous API and ensuring that there is a 
standardized schema available to validate.

Depending on the protocol, an application may just publish and forget after it sends its 
message, but in some implementations, you may also simultaneously subscribe to the 
channel.

Subscribe
Using asynchronous APIs, applications can subscribe to a variety of channels, receiving 
messages as they become available within a system and ensuring data is where it is 
needed as actions occur.

EXPERT PERSPECTIVE

Investing in real-time and  
streaming experiences

When trying to understand where the world of 
APIs is headed, it is helpful to speak with the 
venture capital firms investing in the tooling that 
shapes how we do business. To expand my 
awareness of developer tools, I sat down on 
Breaking Changes with Nnamdi Iregbulem from 
Lightspeed Venture Partners to learn why the 

company is investing in the real-time and streaming API realm. 

Nnamdi spends his time studying what is happening across enterprise 
organizations with streaming and real-time APIs. He is confident that the 
explosion in making data available across our operations and integrations is just 
the tip of the iceberg. Enterprises are making huge investments in modernizing 
their databases, data warehouses, and data lakes, and they are expanding their 

Nnamdi Iregbulem



Chapter 8 | The Essential Elements of API Technology 111

DataOp teams. Teams are investing in infrastructure to deal with the large 
volume of real-time data they have to make sense of each day, leveraging APIs 
to stream data and also manage the infrastructure behind them. 

These real-time data pipes and stores are increasingly important to enterprise 
operations, but investing in machine learning to make sense of the data really 
represents what is coming next. Nnamdi sees a massive need for training 
machine learning models on the real-time streaming data companies are 
generating.This isn’t our grandfather’s machine learning. Like APIs, today’s 
machine learning systems are taking a very modular approach to training 
models as business occurs. The result is MLOps, a term describing how we 
effectively train the models, and ModelOps, which describes how we automate 
the management and workflows associated with applying and evolving models.

As the data and machine learning landscape expands across the enterprise, 
there are more tools for introducing automation and observability, both across 
data operations and across the machine learning layer that is being honed on 
top of the data. That helps both data and the machine learning models trained 
on top of it more visible, tangible, and understandable to teams. Visualizing 
data is nothing new, but visualizing how machine learning is being automated, 
iterated, and applied represents an entirely new market. According to Nnamdi, 
DevOps, DataOps, MLOps, and ModelOps continue to change the developer 
tooling landscape.

What I liked about Nnamdi’s view of the real-time streaming API landscape is 
that he took notice of the growing power developers are acquiring as a result of 
these shifts. He identified the importance of the skills that will be needed to 
continue delivering real-time streaming data experiences enterprises are going 
to need in coming years. That makes skills involving asynchronous, 
streamlining, real-time, and event-driven APIs a very hot commodity today.



112 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

Your enterprise resources, capabilities, and experiences are all defined as APIs. The 
tools you use to manage them will determine how you balance the needs of your teams 
with those of your partners and customers. When you achieve the right balance, you 
can build and constantly improve upon your digital capabilities, benefiting everyone. 

10.1 Optimizing API Infrastructure
Management
Most enterprise API infrastructure has emerged over time, providing the resources and 
capabilities for a single web or mobile application, or possibly an integration with an 
external partner. 

Standardization, efficiency, visibility, and attention to the enterprise legacy are often 
afterthoughts in this endless march forward, and few organizations have a strategy for 
managing the API-first transformation. In this book we intend to elevate your view of 
how you manage your API infrastructure so that you can perpetually work towards 
achieving the right balance for your teams.

While engaging with business and technical leaders undergoing digital transformation, 
we occasionally hear that APIs are just one part of what is needed. That’s because many 
executives are looking at things through a business lens, with only a light understanding 

10
Managing Your APIs



Chapter 8 | The Essential Elements of API Technology 113

of the systems, infrastructure, applications, and networks that will be needed today and 
tomorrow. Yes, there are many systems, applications, and processes involved in digital 
transformation, but APIs are the key element in every one of them. The cloud has APIs. 
Mobile phones have APIs. The IoT has APIs. Networks have APIs. Infrastructure has 
APIs. Business systems have APIs. Heck, even APIs have APIs.

APIs are the piece that gives you the control and visibility you need. Your enterprise 
resources, capabilities, and experiences are all defined as APIs–and so are those of your 
partners. APIs are how you automate and orchestrate your business operations in a 
digital world. It is common for people to have blinders on when it comes to business and 
technology outside their wheelhouse. Database people see databases. Mobile app 
developers see mobile apps. To really see APIs and have them in your wheelhouse 
means that you have awareness across every aspect of your business operations. To 
see APIs means you have visibility and control over the SaaS and other software you 
use (and if your software doesn’t have APIs, you shouldn’t be using it).

There are already many blind spots in business operations today. With so much of the 
business landscape defined as very abstract APIs that exist behind the more visible and 
tangible applications that use them, we end up with an exponential number of digital 
blind spots. An API strategy lays the foundation for how you will manage your API 
infrastructure beyond any of the applications, integrations, and automations that put 
APIs to work. Without a strategy for producing and consuming APIs, it becomes much 
more difficult and costly to optimize the digital pipes behind the applications you 
depend on, and you will be at the mercy of vendors for your operations. Managing your 
API infrastructure is the key to stabilizing your API-first transformation.

Avoid creating an ad hoc API landscape
In the fast-paced enterprise business environment, there is a never-ending attraction 
towards defining digital resources and capabilities as one-offs to support specific 
projects, applications, and integrations. That leaves you with a legacy trail of APIs that 
are often redundant, overlapping, and in need of investment to remain reliable and 
continue delivering value for the business.

Common distractions for API operations
There are plenty of distractions that cause organizations to lose their way of delivering, 
sustaining, and evolving their API landscape. Identifying common distractions is the first 
step in elevating your APIs into a single strategy that can move operations forward.

One Project - It is easy to see APIs as a subset of a project with clear start and 
completion dates, rather than part of a larger enterprise system and 
something that should be discoverable and usable beyond the project at hand.



114 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

One Application - The needs of a specific web or mobile application are often 
prioritized over the larger enterprise system, resulting in redundant or shadow 
APIs, which are invisible because they are obfuscated by apps.

One Partner - It is common to feel the need to respond to partner requests 
individually rather than seeing them as part of a larger system, resulting in 
unnecessary repetitive work. Defining a standardized set of partner resources 
would help speed up interactions.

One Integration - Integrations between two internal or external systems often 
end up as one-off solutions, contributing to an ad hoc landscape rather than a 
ready-to-go integration toolbox for all business needs.

One Customer - Some customers are louder than others and may enjoy an 
outsized role in decisions, resulting in APIs that do not serve the wider needs 
of a customer base. They also lead to an ad hoc API business landscape and 
more overhead.

In the moment, each potential distraction might seem like a priority. Teams will be 
incentivized to deliver the project, application, or integration that meets the specific 
needs of a partner or a customer, resulting in redundancies and inefficiencies across 
operations. But with a centralized API strategy and well-defined API lifecycle and 
governance structures in place, your APIs can collectively be harnessed as part of the 
wider enterprise, with fewer distractions along the way.

EXPERT PERSPECTIVE

The difference between projects 
and products at FedEx

Continuing the ongoing discussions I am  
having with leading API practitioners, I had  
Sri Kandikonda, Principal Product Manager at 
FedEx, join me on Breaking Changes to talk 
about the evolution of API product management 
and why it is so important to businesses today.  
I was eager to learn how FedEx sees digital 

products. We started our conversation by discussing the fundamental 
difference between viewing APIs as projects or products.

Sri Kandikonda



Chapter 8 | The Essential Elements of API Technology 115

10.2 Using APIs Across Many Types 
of Applications
APIs deliver resources and digital capabilities across multiple types of applications, 
powering many different web, mobile, and device services, as well as providing system-

I have heard several compelling definitions of product management, but Sri 
shared with me the fundamental difference between products and projects. He 
compared a product to a baby that needs to be nurtured and carefully managed 
over a period of time. Most importantly, he said your products must align your 
business model, provide clear revenue or value streams, and solve real 
problems for your consumers. In API circles, we have been too focused on 
rolling out APIs.Sri said it is critical that we start with the why, not the what. 
Each API product must solve a real-world business need; otherwise, it will never 
matter, no matter how well-designed or well-implemented it is.

Sri walked me through the landscape of the different types of APIs at FedEx, 
from microservices to public APIs, noting that not all APIs are worthy of being 
treated as products–some entail too many concerns about maturity, visibility, 
and other matters. Sri also said the concept of APIs as a product applies both 
internally and externally, adding that what matters most is that your APIs are 
customer-centric, focused on solving real business problems and provide a rich 
and active feedback loop with consumers.

Sri also shared the importance of self-service. If API consumers can’t 
immediately see the value of your API products and easily begin putting them to 
work in their applications and integrations, they won’t mean much. It’s important 
for developers to have empathy with consumers to discover the experiences 
that matter most to them, then produce documentation, content, and other 
resources that speak to that experience. Then, get out of the way.

Sri’s view of the API landscape and API product management shows what is 
missing across most API operations. I am finding there is an insatiable appetite 
for knowledge in this area. Sri said the subject of product management is 
ubiquitous across university curriculums, and with the evolution of SaaS and 
technical product management, learning about API product management will be 
the next logical step. Let’s hope so because bringing API products into 
alignment with enterprise goals and consumer needs is essential for doing 
business online today.



116 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

to-system integrations and automations. The way enterprises see applications and 
integrations begins to evolve once they begin shifting towards API-first operations, 
pushing the boundaries of what applications mean and how they become part of 
business operations.

Types
APIs have powered applications since the beginning of computers. The current breed of 
web APIs found its roots in aggregating content for web applications, then quickly 
expanded to mobile devices, back to the desktop, and even to the network beneath our 
applications. 

Desktop - APIs are how desktop applications on our Windows and Mac PCs 
exchange data with the server, making hundreds or thousands of calls each 
day to create, read, update, and delete information as needed.

Web - Websites began as simple HTML documents, but have become a 
dynamic mix of many internal and external API calls. These are stitched 
together to provide the desired online experience within a specific domain, 
providing a richer web experience than was possible before. 

Mobile - Mobile phones allow websites and applications to be accessible in 
our hands, turning a device for voice or messaging into a rich application 
ecosystem that sends and receives data across many different cloud 
platforms.

Device - Once developers realized that APIs could power mobile applications, 
they moved on to making internet-enabled televisions, thermostats, 
automobiles, and other IoT products.

Network - As more of the infrastructure we depend on for the web moved to 
the clouds, the network connecting servers and clients has also become 
API-enabled, making the network composable and configurable and changing 
how we operate applications.

These constructs all shape what many think of as an “application,” but APIs and the 
automation and orchestration they power are rapidly changing the notion of how we 
“apply” our digital resources and capabilities both online and offline. The size and scope 
of applications is getting smaller, but their evolution is picking up velocity, moving at the 
pace of consumer demand.

The definition of an application is the action of putting something into operation. As you 
progress in your API-first transformation and begin elevating your API strategy above 



Chapter 8 | The Essential Elements of API Technology 117

any single application, your definition of an application will begin to evolve to reflect 
what matters most to your teams and your customers.

10.3 Strengthening your Partnerships 
with APIs
As more business is conducted online through partner SaaS applications and other 
external services, the urgency to make internal APIs available to partners has increased. 
The line between inside and outside the firewall is becoming blurred as making digital 
resources available to trusted external partners becomes a priority. 

Purpose - You must offer partners a clear menu of enterprise resources and 
capabilities through APIs and self-service, making operations streamlined and 
repeatable across relationships.

Onboarding - With APIs, you can reduce partner onboarding time from weeks 
or months to hours or days, automating the process as much as possible. That 
will reduce friction when qualifying partners and give them access faster.

Access - It is common to give early and exclusive access to API resources and 
capabilities to specific r groups of partners before you offer them to the 
general public.

Innovation - To incentivize partner innovation and provide preferred access to 
fuel the development of new and interesting products and services. Lean on 
partners to deliver applications, integration plugins, and other interesting 
business use cases.

Exposure - APIs in partnership scenarios expose your organization to new 
opportunities for responding to their needs in any situation.

Marketing - The digital resources and capabilities made available via APIs 
provide what you need to develop effective marketing campaigns. Being 
API-first allows your teams to reach new levels of marketing automation and 
do more with less, generating a bigger impact.

Branding - There is an opportunity to extend your brand across external 
communities, leveraging APIs to aggregate content across social networks 
and push messages out through partner platforms.

Communications - Feedback loops are a natural part of modern API 
operations. Gathering feedback from partners informs the API roadmap, 
helping to drive business forward.



118 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

Self-service APIs equipped with a well-defined onboarding process provide a proven 
way to securely connect businesses with partners, enabling synchronous and 
asynchronous digital transactions via APIs. 

An organization-wide API strategy allows you to respond to partner needs without 
advance preparation. Investing in your API-first transformation supports partner 
relationships by making your digital resources and capabilities available to partners, 
allowing them to build the next generation of experiences—which in turn strengthens 
your own business.

EXPERT PERSPECTIVE 

Powering partner creativity across  
NBA teams

It is no secret that APIs power partnerships. But 
I was pleased to learn that by being API-first, 
the National Basketball Association (NBA) is 
able to engage with all of its disparate teams, 
fostering creativity and autonomy, while still 
successfully operating as a single brand. We 
hear a lot about using a federated approach to 

API gateways and governance and how it helps address the sprawling 
enterprise landscape, but the NBA provides a solid example of how taking a 
federated approach to APIs for content and media can have a massive impact 
on business.

Chris Van Patten, Director of Digital Product Development for the NBA, joined 
me on Breaking Changes to talk about the association’s recent shift to an 
API-first stance for content management and how it helped to meet the digital 
needs of individual teams. First, I asked Chris what API-first meant to him. He 
said it all begins with the contract. You have a content management system 
(CMS) on one side and one or more front-ends on the other side, and the API 
contract manages everything in-between. This API-first approach allows the 
NBA to strike a balance between having the access and control it needs while 
still meeting the needs of each team and its fans. Each team is unique and 
autonomous, but still part of the NBA, which has the ultimate say in how content 
and media are presented across the network of web and mobile properties.

Chris Van Patten



Chapter 8 | The Essential Elements of API Technology 119

10.4 Leveraging APIs for Integrations
The enterprise digital landscape is increasingly made up of internal and external 
interconnected systems. Modern web APIs define how these systems interoperate, and 
how they can evolve and be automated. APIs are connecting all parts of enterprise 
operations, leveraging internal and external APIs to stitch together the expanding digital 
landscape required to do business today.

SaaS - APIs enable the SaaS solutions we depend on to run our businesses to 
run seamlessly with existing enterprise operations, allowing aspects of 
business to be outsourced while still maintaining control over usage.

Infrastructure - The existing infrastructure likely already possesses APIs, 
providing a huge opportunity for more automation and orchestration across 
the software already in place. This is your low-hanging fruit.

Interoperability - APIs define how distributed and federated parts of 
enterprise operations are made interoperable, and how acquisitions, partners, 
and industry- level interoperability is set into motion. APIs reduce the 
challenges involved in working across business divides.

The NBA provides us with a powerful example of how API-first can be applied 
through federation. There are 29 separate teams, each with its own web and 
mobile properties. While the NBA can dictate and control many things, the 
organization and its fans are better off when each team is allowed to be as 
autonomous and creative as possible–while still representing the parent brand. 
For Chris, being API-first means balancing the central organization with team 
needs across a very complex mix of content, media, schedules, and other 
constraints that define professional sports today. Being API-first and API 
contract-driven allows the NBA to deal with the complexities of its operations, 
establishing alignment with business goals while allowing for innovation to 
occur centrally and across teams. And that’s really what APIs are all about.

My conversation with Chris reinforced my thinking about how we can take 
advantage of APIs using a federated model, using it not just for data, but to 
better meet our content and media needs. It reminded me that all the nuances 
of data, applications, content, media, and algorithms we use are really just  
the base for how we deliver the next generation of experiences to empower  
our partners.



120 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

Syncing - Syncing data across operations and with external partners and 
services is a regular part of business operations. APIs enable you to do that as 
efficiently and cost-effectively as possible, allowing for more alignment across 
business domains.

Migrations - APIs are how data and objects are migrated between servers, 
clouds, partners, and other constructs of our regular operations. They ensure 
that small or large amounts of data are made accessible, so that they can be 
migrated to a new location for optimal usage.

Automation - The only way an organization can remain competitive in this 
digital landscape is through the automation of common business processes. 
APIs define those processes and the digital resources they depend on, 
providing the information t we need to automate them.

Orchestration - APIs provide the knobs and levers that can be scheduled, 
triggered, and pulled to keep business moving forward, producing just the 
right performance for our operations.

The average enterprise landscape has thousands of connected servers and platforms. 
APIs determine how they are made whole (or left operating in isolation). APIs are 
essential to the interoperability of a distributed enterprise and the industry it operates in.

EXPERT PERSPECTIVE 

Baking APIs into top platforms  
at Shutterstock

When I sat down with Alex Reynolds, the former 
Vice President and General Manager for 
Platform Solutions at Shutterstock, I expected a 
pretty straightforward API story about a public 
API portal and developers building applications 
for the image and video company. Though this 
was certainly part of our conversation, what 

really caught my attention was how the company is baking their API solutions 
into other leading platforms, providing next-level API adoption.

From what I gathered, Alex’s experience in business development and his 
platform vision contributed to the company’s approach, and it is proving to be  
a very winning formula. Shutterstock didn’t have a “build it and they will come” 

Alex Reynolds



Chapter 8 | The Essential Elements of API Technology 121

10.5 Reshaping your Legacy Systems 
with APIs 
APIs are widely used to address challenges with legacy infrastructure.Teams are finding 
success with more modular approaches, refactoring order systems to work with modern 
applications and integrations, and in some cases doing away with legacy infrastructure 
altogether. APIs are helping enterprises deal with technical debt and future-proof 
operations against further technology debt. They do that by ensuring that systems are 
smaller, more modular, and capable of evolving and deprecating without the overhead 
associated with legacy systems.

mentality with their public API portal. Instead, the company got to work building 
the trust of leading platforms like Wix and Facebook, baking its image and video 
solutions into the business workflows of website operators, marketers, and 
other people already using these platforms on a daily basis. 

Shutterstock’s team approaches the development and iteration of their APIs 
with a heavy emphasis on partner engagement, workflows, and feedback loops. 
The digital media company injects itself into essential business processes and 
workflows, then leverages partner feedback loops to experiment and iterate to 
better meet the needs of consumers. Shutterstock is essentially maintaining a 
real-time business development feedback loop that is baked into other leading 
platforms. The business value generated by partner relationships is important, 
but the feedback loop from workflows on partner platforms is where the 
company’s future business value lies.

The experiences Shutterstock’s raw API resources are delivering via partner 
platforms are moving the API program forward. The feedback loop and product 
focus surrounding their API operations power the road map, informing teams 
when iterating upon each API but also creating new APIs that provide machine 
learning, analytics, and other essential resources for use in the next generation 
of APIs. Partnerships have become the cornerstones of Shutterstock’s API-first 
transformation, allowing the company to keep its finger on the pulse of 
consumer activity across a broad spectrum.



122 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

Monolith - Teams are using APIs to decouple and redefine monolithic legacy 
systems, reverse-engineering and implementing microservices and APIs to 
modernize legacy systems. They are breaking business down into more 
manageable components that can evolve.

Microservices - Modular, single-use, synchronous and asynchronous 
microservices are redefining legacy systems, allowing them to become more 
distributed with components that are easier to evolve and reuse.

Facades - APIs create facades that provide modern interfaces for 
applications, working to evolve or deprecate infrastructure. That allows 
technical debt to be abstracted away so it can be sustained or deprecated.

Gateways - Gateways provide an industrial-grade approach foro standing up 
a modernized stack in front of legacy systems. They provide a single 
modernized entry point for all API infrastructure without exposing back-end 
systems.

Proxies - Proxies intercept and map out the traffic in legacy applications. 
Proxies, APM, and other solutions can map out exactly what legacy systems 
do, applying the information to define and deliver facades and microservices.

Deprecation - There may come a time when legacy systems can be 
deprecated, relying on proxies, gateways, facades, and microservices to chip 
away at how systems are used in applications and modernize enterprise 
infrastructure. 

Sustainment - While not desirable, there are many situations where legacy 
systems may not be able to be deprecated for some time. Organizations must 
undertake an honest assessment of how gateways and other approaches can 
be used to sustain legacy infrastructure.

APIs are essential for modernizing legacy infrastructure, providing interfaces that can 
be used in applications, while abstracting away legacy solutions undergoing 
modernization. APIs can help modernize existing infrastructure without disrupting 
applications and integrations dependent on the digital resources and capabilities 
delivered by legacy solutions.

Ideally, the modernization of your legacy systems will not be a separate project from 
your regular operations. Early in your API-first transformation, you may have to dedicate 
resources to mapping out and redefining your legacy infrastructure landscape. But as 
you move forward, this task should become part of every team’s regular work, and 
everyone should be addressing legacy technical debt along with the new.



Chapter 8 | The Essential Elements of API Technology 123

EXPERT PERSPECTIVE  

Perpetually addressing legacy 
technology is part of being API-first

While chatting with Rico Cordova, Head of 
Content Engineering for Samsung TV Plus, I was 
eager to learn more about his approach to 
dealing with the technical debt built into the 
company’s regular development processes. Rico 
is laser-focused on developing highly optimized 
teams who can deal with anything thrown at 

them. He believes that when you are building new systems, you are equally 
responsible for taking care of your legacy technology. 

Rico is a veteran when assembling high-performing teams capable of 
developing the microservices and APIs needed to deliver digital media at 
competitive speed. I was impressed with the way he has his teams document 
APIs and processes, making sure everyone has the education and skills they 
need to deal with change and move at the velocity this industry demands. Rico 
believes your technical debt is directly related to the velocity at which your 
teams can move, so it was critical for teams to address their technical debt in 
real time as part of their regular work.

Think about it. The work required to address technical debt is a regular part of 
defining, designing, and delivering new resources and capabilities. This means 
you don’t have to trace and discover your dependencies, or have entirely 
separate teams map out the legacy landscape and work to modernize it. Each 
team understands that their technical debt is directly related to their forward 
motion.

To do new and interesting things, you must address what has come before. Rico 
also shared a healthy view of what legacy means, reflecting on why we see our 
technical legacy as a negative thing. He ultimately agrees that bad technical 
debt is the result of inadequate real-time processes that are woven into 
operations and remain unaddressed. 

I spend a lot of time thinking about the relationship between APIs and change 
management.Talking with Rico gave me a whole new perspective on how an 
API-first approach helps us address our technical legacy. I have long seen how 

Rico Cordova



124 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

10.6 Open Source Solutions 
Open source tooling has become the bedrock of every enterprise organization. Open 
source standards and specifications are rapidly providing the nutrients needed for a 
healthy and vibrant API life cycle. If your organization simply sees open source as a way 
of bypassing the costs of commercial solutions, then you aren’t realizing the full 
business potential of open source. 

Most people associate open source with tooling, but there are a range of elements  
that can make it change the way that you do business as part of your API-first 
transformation.

Tooling - Open source tooling and packaging e is widespread across 
enterprise organizations, but teams rarely measure how it is used to stitch 
together procedures across operations.

Specifications - OpenAPI, AsyncAPI, JSON Schema, GraphQL, and other API 
specifications have become standard machine-readable contracts for 
conducting business through self-service and automation, helping to stabilize 
our operations.

Standards - Internet and industry standards are beginning to stabilize finance 
and healthcare–the top two industries. They provide more structure for these 
industries in the EU and U.S. and offer a model for other countries and 
industries to follow.

Content - Open source doesn’t stop with tooling, specifications, and 
standards. It is increasingly used to produce content and media, changing  
the way enterprises produce and consume APIs across teams.

Licensing - The legal licensing for tooling, specifications, standards, and 
content is how most people define the quality of open source. While licensing 
agreements do set the tone for what is possible, they are just the starting 
point for real value.

you can use APIs to deprecate, then modernize your legacy systems. But Rico’s 
views shifted how I see the responsibility of each team, not just for dealing with 
technical debt, but helping to make sure the organization’s technical legacy isn’t 
seen as a negative.



Chapter 8 | The Essential Elements of API Technology 125

Contributions - Open source solutions are only as strong as their contributors. 
Their worth depends on the passion, skills, and the free time of people who 
know the domain the open source is applied to and have invested in 
understanding what is being built.

Collaboration - Without collaboration and coordination in open source tooling, 
specifications, standards, and content, you end up with something that is 
rarely active and alive, and won’t be around for very long.

Communication - Communication between open source contributors and 
consumers can be difficult because the usual gates associated with 
proprietary offerings don’t exist, making open channels essential for health.

Every enterprise is an open source consumer. You will begin to see the real benefits of 
open source across your teams when you become a contributor. You are the one with 
domain expertise within your industry, and that could really benefit open source tooling, 
specifications, standards, and content it uses.

Don’t let the lawyers at your company scare you off from participating in open source 
communities. Do the work to bring awareness across teams, and also among 
leadership. At the very least, start by making sure you are aware of how open source is 
currently being used.

EXPERT PERSPECTIVE 

Providing for the next generation of 
open source needs

Like every other aspect of technology, the world 
of open source tooling, specifications, 
standards, and content is rapidly expanding and 
evolving. I recently spoke with Pia Mancini, 
Co-Founder and CEO of Open Collective, about 
what open source maintainers and contributors 
need today and where things are headed. Open 

Collective is at the heart of funding and providing governance for open-source 
projects. In my opinion, it reflects the front lines of future open-source 
development. 

Pia Mancini



126 Part 02 | Technology and Governance Chapter 10 | Managing Your APIs

10.7 Managing API Access 
APIs are abstract and difficult to see, creating anxiety about who has access to put 
digital resources and capabilities to use. While a significant amount of discussion in the 
last decade has been about public APIs, the majority of APIs are only available privately, 
existing in the shadows behind our web and mobile applications. 

At first glance, Open Collective appears to be a way for open-source 
maintainers to raise funds. This is definitely at the heart of what Open 
Collective does, but doing it across many jurisdictions across the globe is what 
makes it a powerful platform for open-source solutions. According to the 
organization’s website, “Open Collective is a legal and financial toolbox for 
grassroots groups. It’s a fundraising + legal status + money management 
platform for your community.” It is a game changer for open-source maintainers 
living outside the markets where their sponsors and contributors operate, 
opening the door to the funds they need to keep operating and expanding. 

What I didn’t understand about Open Collective is that the money is just the 
beginning. The organization also provides a governance framework that groups 
can use to establish a more solid platform. Most open-source maintainers do 
not have the experience required to govern their communities. Open Collective 
provides an opportunity for them to tap into a well-defined, ready-to-go 
scaffolding, enabling them to govern and navigate the complicated arena of 
open source. Most people do not go into open source with plans for organizing 
and operating what they are building—they are just looking to deliver a 
technical solution that meets the needs of existing or potential consumers. 
Open Collective provides organizational structure, letting open source 
maintainers focus on doing what they do best.

You can see some of what the Open Collective presents in the Apache and 
Linux Foundations. What you don’t see is how the organization is responding to 
the increasingly diverse needs of open-source maintainers, contributors, and 
sponsors around the globe. As open source continues to expand, it is becoming 
increasingly diverse. As technology extends further into every area of life, we 
are seeing open source involved in conflict zones like Ukraine or Afghanistan. It 
is at the front lines of almost every social justice issue you read about in the 
news. This is a reality that Pia and the Open Collective are tackling head-on, 
realizing that the old days of open source are rapidly fading, and its future lies in 
interacting with diversity and social justice issues around the world. 



Chapter 8 | The Essential Elements of API Technology 127

Access
It is critical for organizations to effectively control the visibility of their APIs, quickly and 
confidently moving them from private team use to make them available to partners or 
third-party developers. This ability will play an outsized role in the velocity of 
enterprises doing business today.

Private - Being private means keeping APIs and the operations around them 
private and available to stakeholders on an invitation-only basis. 

Team - You can limit access to APIs, workspaces, documentation, and other 
elements of the API life cycle to the teams who will be producing or consuming 
them internally. Eventually, you may decide to make them available to partners 
or public consumers.

Group - In many organizations, APIs are only available to a specific group, 
domain, or legacy tribal boundary. Access is limited based on lines of business 
and the needs of applications and integrations within a single group.

Partner - You can also choose to expose APIs, documentation, mock servers, 
environments, and testing to trusted external partners. That will allow them to 
view or contribute to producing or consuming APIs, using workspaces and 
repositories to engage across the life cycle.

Public - It is common to make workspaces, APIs, and other elements available 
to the public, applying necessary authentication and access controls. That 
allows anyone to watch, fork, learn from, and work with the APIs around them.

API visibility can be anxiety-inducing if enterprises do not have organizational-wide API 
management, authentication, access controls, and other security practices in place. 
APIs are all about striking the right balance between access and control, while keeping 
everything in alignment with business needs and consumer expectations. 

It is common for teams to believe that internal, private, team, or group APIs do not need 
the same level of investment in design, documentation, testing as other elements of API 
operations. However, if teams are consistent in how they treat APIs, the transition from 
private to public becomes much less anxiety-inducing. The organizational transition 
from API-early to API-first is all about the mastery of tools and processes needed to 
confidently move from private to public with API resources in as short a time as possible 
maintaining the highest levels of quality, reliability, and security.



128 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

API governance is established by the organization’s leaders, who must set a clear 
strategy for all API operations and make sure all teams understand and follow the rules. 
The goal of governance is to help teams deliver consistent APIs across a consistent API 
life cycle, no matter what type of API products they may be developing. 

11.1 Managing API Governance
Your governance sets the rules your teams will use to work with, roll out, and manage 
APIs across the enterprise. Here are some of the factors leaders consider in creating a 
governance strategy and making guidelines available to the teams who will use them. 

The elements of governance
Shape - The shape of governance depends in part on the existing 
organizational apparatus. You must always ensure that API operations are in 
alignment with the business.

Domains - Governance means carving operations into logical bounded 
contexts that can be used to define and shape how teams operate.

11
Developing Governance 
and Standards



Chapter 8 | The Essential Elements of API Technology 129

Guidelines - Formal documentation, wikis, or other documents define your 
governance and enable teams to do the right thing as part of their work.

Maturity - You should have a clear definition of what constitutes API maturity, 
while allowing for different levels of maturity to coexist with a balanced set of 
expectations.

Standards - Teams should have a strong and ever-evolving awareness of 
standards that exist inside and outside the enterprise, and a strategy for how 
they will be applied.

Templates - Provide as many reusable templates as you can to help 
demonstrate and apply patterns, standards, and other elements to APIs and 
the operations surrounding them.

Rules - Establish sets of linting rules that can be applied at design time to 
guide the creation of standardized APIs and applied across the entire API  
life cycle.

Policies - Define standard source control, CI/CD, gateway, and other policies 
to help govern API operations, standardizing the configuration and shape of 
API production.

Centralization - Consider which parts of governance should be centralized, 
developing a single body within the enterprise to help guide governance.

Federation - Consider which parts of governance should be federated, relying 
on teams to define, shape, and lead when it comes to their own enablement

Design Reviews - Formal reviews examine the design of APIs, providing 
self-service. Peer reviews also help API producers consider the big picture 
when designing.

Quality Reviews - Formal reviews help ensure that all APIs are fully 
documented and properly tested.

Security Reviews - Formal security reviews look at the security of each API, 
ensuring that encryption, authentication, authorization, and other security 
elements are in place.

Enablement - Governance on the ground floor enables teams to do the right 
thing throughout their regular work.



130 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

It is important to remember that capital “G” governance is only a concept that lives at a 
high level of the enterprise.On the ground floor is where lowercase “g” governance 
operates. Governance is about enabling API teams to do the right thing without having 
to think twice or work very hard. Leaders provide the standards, processes, and tools to 
help them do that.

Finding the right shape for your governance
The structure of API governance must be established at the highest levels of the 
organization–otherwise, it will just be a low-level vision realized by a handful of teams. 
To have the greatest impact, governance needs to reflect the particular organization 
that is applying it. To do that, leaders must invest in resources, time, and people to 
develop a system that will guide teams in learning about, understanding, applying, and 
reporting on governance rules, as well as providing feedback on what is working and 
what is not. 

Structure - Provide a clear structure for how governance will be executed, 
balancing a top-down with a bottom-up approach to looking at it.

Leadership - Select a group of business and technical leaders, bringing 
together a mix of skills and domain expertise.

Guidelines - Provide details on the standards for designing APIs, but also for 
documentation, testing, and other aspects of team API operations.

Domains - Establishing domains within the enterprise will allow for logical 
separation of business concerns in accordance with the dictates of domain 
experts.

Groups - Establish a logical separate of teams, grouping them by domain, line 
of business, project, or another bounded context that makes sense. 

Teams - Define the team of people behind API operations, providing names, 
roles, and other relevant details about who they are and what they will be 
contributing to the team.

Workspaces - An API workspace strategy lays out the API factory floor for the 
enterprise, establishing naming conventions and other patterns to enable 
teams.

SingleSign-On - Provide teams with an authentication scheme allowing them 
to log in with a single ID across the multiple services they will need for work.



Chapter 8 | The Essential Elements of API Technology 131

System for Cross-domain Identity Management (SCIM) - Leverage the SCIM 
standard for automating the provisioning and deprovisioning of team member 
accounts.

RBAC - Role based access control should be applied at the authorization layer 
of an API, but also to the API operations around it, helping govern who has 
access to operations.

How you shape your governance will set the pace for your teams, enabling them to 
move forward, deal with change, and feel like they are part of defining and evolving the 
shape of governance. By making teams a part of the governance discussion, you will 
ensure that your guidance is realistic and easily adopted. 

The parts of API governance that need to be centralized
Centralizing practices and information across the enterprise organization helps 
streamline and standardize teams’ work. Centralization provides the consistent 
nutrients teams need to be successful and allows disparate groups to produce 
consistent and valuable services.

Excellence - Set up a center of excellence, bringing together all necessary 
knowledge, skills, and practices and working to evangelize them across 
domains and teams to facilitate awareness, participation, and feedback.

Expertise - Create a central group of leaders with different areas of expertise. 
Make sure they meet regularly to identify and evolve the knowledge and 
practices teams need to be successful.

Leadership - Establish clear leadership for centralized governance, taking a 
lead role in demonstrating how and why API governance matters. You can do 
that without ever having to say the word “governance” or being seen as an 
enforcer.

Domains - Thoughtfully carve the enterprise into logical domains that reflect, 
but transcend tribal boundaries that emerge from lines of business and legacy 
acquisitions. Establish clear articulations of your business domains.



132 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

Vocabulary - Define the common vocabulary used within domains, using the 
language teams will use when designing APIs. Also engage with consumers of 
those APIs, making producing and consuming APIs as intuitive as it can 
possibly be.

Rules – Craft and evolve linting rules across domain contracts and artifacts, 
encouraging teams to apply them. They can even be applied as part of policies 
used across gateways and other stops along the life cycle to help stabilize API 
operations.

Enablement - Provide the best possible services, tooling, standards, and 
other resources for teams, making it easy for them to deliver and operate 
consistent APIs, no matter which team created and owns them.

Feedback Loop - Foster an active two-way feedback loop with teams, 
encouraging feedback on governance. Allow teams to dictate the evolution of 
centralized guidance as it is applied on the ground across federated API teams.

How centralized your governance is will vary according to your company’s structure, 
culture, and industry. This is the reality on the ground. It is also the reason you should 
have ongoing conversations with teams as part of your governance feedback loop. 

11.2 Improving Organization with 
Domain-Driven Design (DDD) 
The enterprise is a complex landscape of digital activit.Domain-driven design, or DDD, 
has emerged to help enterprise architects and other stakeholders define, organize, and 
communicate about all of the digital resources, capabilities, and experiences across the 
business. DDD allows business and technology leaders to establish better alignment 
and clarity across operations, providing the vocabulary, patterns, and standards that 
enable teams to build reliable, consistent software using APIs.

Models - Models are software abstractions that describe business logic. 
Developing models helps narrow the divide between code and a description of 
business operations and value, providing us with a way of quantifying the 
digital resources we use across APIs.



Chapter 8 | The Essential Elements of API Technology 133

Bounded Contexts - We define enterprise operations as large models by 
dividing them into different bounded contexts, while being clear about their 
interrelationships. That provides meaningful segmentation that transcends 
legacy tribal boundaries.

Command Query Responsibility Segregation (CQRS) – A CQRS approach 
allows you to use different models for updating or reading information, 
providing more abstractions, and in some cases, more complexity.

Ubiquitous Language - Ubiquitous Language is the practice of building a 
common, rigorous language between developers, users, and business 
stakeholders, ensuring that everyone involved with API operations is on the 
same page and uses a common vocabulary.

Microservices - Using microservices means designing software applications 
as suites of independently deployable services. These services can include 
business capabilities, automated deployments, and business intelligence. 
Microservices provide decentralized control of languages and data.

Dependencies - DDD helps provide an honest and clear view of the 
dependencies between APIs, mapping the technical ways they work together, 
while also providing visibility. 

Patterns - With DDD, you identify existing patterns across the APIs and 
microservices in use. Then you can spread the use of these patterns across 
teams, while working to introduce new healthy patterns into regular team 
workflows.

Experts - Domain experts should always have a seat at the table in modeling 
business operations. They help segregate responsibility and define the 
Ubiquitous Language you use. Including them ensures that the business 
domain always has a voice.

Domain-driven design isn’t just about these tangible elements.Iit is about enabling your 
teams and articulating the domains you are operating in. That will translate into the 
overall design and experience of your APIs. DDD represents the order (or chaos) that 
exists across API operations.



134 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

EXPERT PERSPECTIVE 

Events, workflows, and automation 
in the energy industry

One of the common questions I hear from 
enterprise teams is how to define and design 
their APIs. But as we stated in the opening of 
this book, there is no single successful way to 
do APIs. Only you possess the domain 
knowledge needed to define and design APIs 
that matter for your business. I saw an example 

of this in action during my Breaking Changes conversation with Robert Flowers, 
Senior Product Owner at Duke Energy. Robert is a domain expert in the energy 
space, and his view across the business, technical, and regulatory landscape 
provides an inside look at API-first transformation in that industry.

Robert walked me through all of the elements of a healthy API-first 
transformation in progress. It started with modernizing legacy systems and 
applying domain-driven design principles to establish alignment between 
business teams, development teams, regulators, and the energy industry. Then 
Duke Energy began defining all their digital resources using RESTful 
synchronous APIs, actively mapping out all meaningful events that are 
occurring and making the information available via asynchronous APIs. Duke is 
investing in a data mesh to define and connect all the sources of data across 
the enterprise, producing a single layer teams can use to discover digital 
resources when developing applications and integrations. Robert and Duke 
Energy clearly understand the importance of laying a strong base foundation 
for the operations that they’ve built and how doing that is critical to their overall 
API-first transformation.

Everything Duke Energy is building enables the workflows and automation the 
company will need to operate, compete, and innovate in the energy sector. 
Duke Energy is heavily investing in the schema, contracts, change 
management, and governance required to deliver the capabilities they need to 
compete in tomorrow’s energy market and deliver the physical and digital 
experiences their partners and customers need.As a by-product of this 
investment, they will be able to more easily respond to industry regulation that 
contains to shape this important layer of our society. Duke Energy still has a lot 
of work to do in its API-first transformation, but the important thing is that they 

Robert Flowers



Chapter 8 | The Essential Elements of API Technology 135

11.3 Providing Guidelines and Guardrails for
Your Teams 
Governance guidelines are commonly used to inform all stakeholders in the API life 
cycle about API strategy. They express how teams should be pushing APIs across a 
common API life cycle. Guidelines help govern not just the design, but every other stop 
along this life cycle. They are essential to getting teams on the same page as they 
produce APIs across operations.

Strategy - The API strategy distills the plan into something that can be 
articulated across the organization, speaking to both technical and business 
groups.

Protocols - It’s important to establish a toolbox of protocols available to 
teams, providing a baseline for protocol selection and application.

Patterns - A catalog of common patterns provides examples of how to define, 
design, develop, and operate APIs across a standardized API life cycle for all 
teams.

Standards - Document all standards available for designing and developing 
APIs, offering a fully fleshed-out set of common standards that match each 
domain.

Templates - Offer a catalog of common templates, providing examples of how 
teams can define, design, develop, and operate APIs across a standardized 
API life cycle.

are doing the work, laying the foundation. Robert and his team fully understand 
the value of the data they possess. They realize that having productive teams 
and high-quality, well-governed, and consistent APIs will allow them to respond 
to events as they occur and build the workflows and automation they need to 
optimize business operations.

One seismic shift I’ve noticed over the past couple of years is that companies 
that have been doing APIs for a while–those that have a solid base of digital 
resources and well-honed processes behind them–are now ahead of the game. 
These companies are beginning to deliver more meaningful experiences for 
their consumers because they have a base of resources available to do it.



136 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

Errors - Provide standardized and well-defined guidance for handling errors, 
ideally following Internet standards. 

Security - Make security policies and practices a part of guidance, providing 
tools and other resources that shift security left and enable teams to apply 
best practices early.

Lifecycle - Document the API life cycle in motion across the enterprise, 
providing a common vocabulary for describing each stop along the life cycle 
for teams.

Tooling - Providing a catalog of the tools available to service every stop along 
the API life cycle, including a mix of platform, third-party, and open-source 
solutions for teams.

Your governance guidance should start simple. If you need help, look at the guidelines 
of top public API providers, then define what matters most to your operations and 
communicate that to your teams. Then keep iterating upon it, learning from your teams 
and your consumers. Continue updating your guidance and keep evolving and 
responding to concerns that matter.

Remember, none of your developers will care about API governance. A lack of 
governance really boils down to a lack of support and enablement for teams on the 
ground floor. If your API governance falls short, make sure you review the resources  
and tools you have provided to your teams.

11.4 Defining and Communicating API
Maturity 
Not all APIs are created equal. Still, many things we apply to our public APIs can help 
prepare our less mature internal APIs for consumption beyond internal teams. Without a 
clear understanding of what constitutes maturity across various APIs, teams are left 
trying to do the best they can in the moment. However, once we have a structured way 
of defining and communicating what API maturity means, we can better comprehend 
where each of our APIs stand.

Version - An organization-wide approach to versioning and communicating 
APIs provides a foundation for defining maturity. APIs tend to mature as they 
change, and versioning facilitates community maturity.



Chapter 8 | The Essential Elements of API Technology 137

Consumers - One of the best ways to mature and harden an API is for people 
to use it. Each consumer of your API provides one more potential vote in your 
API maturity ranking, helping validate that you are heading in the right 
direction.

Metrics - Possessing, reporting upon, and regularly questioning the metrics 
you are using to define success of your APIs will shape how you define 
maturity. A lack of measurement means you are unlikely to move forward in 
ways you know about and can learn from.

Feedback - Receiving feedback from your API consumers, then incorporating 
that feedback intelligently into your roadmap is how you “hear” your APIs.  
The more mature your feedback loop is, the more mature your APIs and your 
operations will be.

Reliability - Having a baseline of testing, security, and governance for your 
APIs provides the reliability you need to convey maturity to your consumers. 
Nobody will consider your API mature if you break contracts and do not 
perform as expected.

Lifecycle - One of the things that will help you offer more mature digital 
resources, capabilities, and experiences is having a well-defined and well-
executed life cycle. Without a shared understanding of each step, your teams 
will never reach maturity.

Observability - Observability means being able to understand and control the 
state of your APIs using the existing outputs of your operations. It is key to API 
maturity. If you can’t measure and see your APIs and the operations around 
them, you’ll never stabilize your APIs.

Governance - You must eEstablish a baseline for the consistency of your APIs 
and the life cycle around them to mature the API products you deliver across 
domains, and teams. Becoming more consistent is an important part of 
achieving API maturity.

Just as achieving maturity means different things to different people or businesses, 
achieving API maturity depends on your overall business strategy and operations. Still, 
mature API operations do share some common characteristics. They also lack the chaos 
and unreliability of less mature API operations. Discussing API maturity will help you 
realize what you need to do to deliver more reliable API products that meet the needs of 
your applications and integrations. 



138 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

11.5 The Importance of Standards across 
the API Life Cycle
Standards keep us from reinventing the wheel with our digital resources and 
capabilities. They also help ensure that our APIs interoperate with other systems as 
much as possible. A wide variety of general and precise API standards exists, providing 
us with solutions ranging from the backbone of the internet-level considerations to 
common healthy patterns to use for making APIs intuitive and easy to use.

When you are doing business on the web, it doesn’t make sense to compete on the 
naming and ordering of the interfaces you produce, consume, and depend on across 
your applications and integrations. You already depend upon industry standards like 
HTML for websites and SMTP/POP for email. It doesn’t make good business sense to 
manage your digital resources, capabilities, and experiences in a proprietary way. 
Standardizing encourages interoperability and reuse within your organization, as well as 
within your industry. It doesn’t give your competitors any advantages, and it will allow 
you to move faster. 

Standardization of your API operations begins with the protocols and patterns you 
already use to design and deliver your APIs. After that, it is an ongoing evolution of your 
infrastructure, practices, policies, and the education you provide your teams throughout 
your API-first transformation. Standardization does not mean finding a set of standards, 
applying them, and then you are done. Using standards means being aware of what is 
and is not working in your API infrastructure. Using established standards helps make 
things more consistent and interoperable. Exploring standards encourages you to 
consider how you can further standardize based upon what you are already doing.

It is common for people to think of standards bodies like IETF and IANA, or industry-
level standards. These are formal examples of standards, but we are also talking about 
how you define your API life cycle and apply governance across your operations, as well 
as the design of each API. 

Standardization is about properly defining how you do what you do, sharing that across 
as much of your organization as possible, and treating your standards as living and 
evolving over time. Standards stabilize how you do APIs so that teams can move faster, 
with higher levels of quality and reliability. 

Begin the standardization portion of your API-first transformation by documenting the 
standards you are already using, such as HTTP, JSON, and OpenAPI. Then seek low-
hanging fruit for designing, delivering, and operating your APIs, continuing to invest in 
standardization across your operations.



Chapter 8 | The Essential Elements of API Technology 139

11.6 Internet and Industry Standards
APIs are the next evolution of the web. A number of existing internet standards should 
be applied regularly as part of API operations, as early in the life cycle as possible.

Internet Assigned Numbers Authority (IANA) - The Internet Assigned 
Numbers Authority (IANA) is a standards organization that oversees global IP 
address allocation, autonomous system number allocation, root zone 
management in the Domain Name System (DNS), media types, and other 
Internet Protocol-related symbols and internet numbers.

Request for Comments (RFCs) - RFCs are a publication in a series from the 
principal technical development bodies for the internet, most prominently the 
Internet Engineering Task Force. They are authored by individuals or groups of 
engineers in the form of a memorandum describing the methods, behaviors, 
research, or innovations that apply to the working of the internet and internet-
connected systems.

Do not reinvent the wheel for designing and transporting your digital resources and 
capabilities. It is extremely likely that there is already a standard out there to support 
what you are doing.

Industry Standards
Data and other interoperability and communication standards have existed at the 
industry level since the birth of computers and the internet. More recently, they are 
evolving to support modern approaches to delivering APIs behind web, mobile, device, 
and other types of applications. 

PSD2/PSD2 - This is a European Union Directive administered by the European 
Commission to regulate payment services and payment service providers 
throughout the European Union (EU) and the European Economic Area (EEA), 
providing a common set of industry API standards for financial enterprises and 
providers of tools and services to follow when delivering API infrastructure.

Fast Healthcare Interoperability Resources (FHIR) - This standard describes 
data formats and APIs for exchanging electronic health records (EHR), 
providing a common set of digital objects and API paths for accessing digital 
healthcare records using modern API infrastructure.

PSD2/PSD3 and FHIR are just the first two industry standards that speak directly to how 
we design and deliver our APIs. The fact that they emerged from the top two industries 
is a sign that other sectors are likely to follow their lead.



140 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

11.7 Organizing Your Standards
What to standardize
Every organization should have a set of standards for API operations. There are plenty 
of redundant aspects of doing APIs that are easy to make consistent–things like 
vocabulary, pagination, sorting, filtering, usage of request bodies, HTTP methods, and 
error handling. A little standardization in these areas can go a long way towards 
stabilizing the development and delivery of r your APIs, making your consumers’ lives 
easier along the way.

Vocabulary - Establish a common vocabulary for naming things, then sharei 
that vocabulary across teams to standardize and optimize the way you talk 
about APIs. Getting teams to use the same language throughout their work will 
help reduce the friction associated with forward motion.

Headers - Headers are key-value pairs of data that can be passed back and 
forth as part of API requests. They conform to the HTTP standard and rely  
on the IANA registry of headers to define the routing and prioritization of 
requests made to APIs when using HTTP as the transport protocol between 
client and server.

Pagination - Pagination provides a standardized way of navigating large sets 
of data and content via an API. It limits the results returned with each request, 
but provides consumers with visibility for navigating i results and shaping their 
API requests to achieve optimum outcomes for API producers and consumers.

Schema - Establish a common schema for each domain, using internet and 
industry standards when possible, but then standardize your own schema, 
stabilizing common objects and versioning and evolving them for reuse.Then 
reference them in contracts and use them for validation, documentation, 
testing, and other parts of the API life cycle to stabilize how data moves inside 
and outside the enterprise. 

Variables - Define a consistent set of variables that can be used to abstract 
away common properties for use across different APIs. You can define things 
like base URL, headers, secrets, and environmental, collection, or global values 
that are needed across many different APIs.



Chapter 8 | The Essential Elements of API Technology 141

Internet, industry, and organizational standards provide the base for the consistency 
and interoperability across enterprise operations. These standards make APIs more 
intuitive and help them speak a common language, reducing friction for consumers who 
put them to work in applications and integrations.

This is by no means meant to be a complete list of things you should be standardizing in 
your organization. This blueprint is just designed to remind you that you need to be 
standardizing as part of your regular operations. The items listed here reflect the most 
common areas I see among API-aware and API-first organizations that are finding 
success. By employing some simple standardization measures, they are accelerating 
the velocity of their API-first transformation. 

Providing standardized components and templates
Common, reusable, and standardized templates enable teams to move faster while 
delivering more consistent and reusable APIs. That reduces time, money, and friction 
downstream. Reusable components often begin with design patterns that can be 
applied during the define and design stages of the API life cycle, but can expand rapidly 
to include almost every other stop along the lifecycle.

Simple - Provide simple templates that reduce the cognitive load for learning 
new standards and patterns to produce APIs.

Modular - Keep templates modular and reusable, daisy-chaining concepts 
together into large patterns, workflows, and processes for moving APIs 
forward.

Reusable - Design your standardized components to be reusable, allowing 
them to do one thing and do it well, then be applied in many known and 
unknown uses.

Starter - Offer entire starter kits to teams when starting a new API, providing a 
complete example of the preferred way for designing, developing, and 
operating APIs.

Contracts - Maintain a catalog of complete contracts showing 
implementations of different types. This allows for easy editing and sets new 
APIs into motion.

Components - Leverage the components object for OpenAPI and AsyncAPI 
contracts, providing a rich set of templates that can be used to rapidly design 
new API contracts.



142 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

Extensions - Use extensions for OpenAPI and AsyncAPI, going beyond what 
each specification can do and providing templates teams can use across the 
API life cycle.

Rules - Set template rules for linting different artifacts, helping jumpstart the 
use of common rules and the development of new ones to help govern 
operations.

Policies - Provide standardized policies and starter templates to apply across 
the API life cycle, helping to centralize policy management while federating 
usage.

Templates help enable teams to do the right things across the API lifecycle, helping 
provide the common parts and pieces of delivering APIs. They help teams focus on the 
unique experiences your enterprise provides to consumers via APIs.

Think of API operations as a bucket of Lego bricks, where the reusable components are 
the red, blue, and yellow bricks and your API strategy uses these bricks in a variety of 
strategic kits or templates to deliver the business outcomes leaders are looking for.  
All teams have to do is build templates, allowing other teams to assemble new and 
interesting experiences using raw bricks.

EXPERT PERSPECTIVE

How standards reduce friction  
for industries

One thing you learn when speaking with API 
veterans like Alexei Akimov, former Head of API 
at Adyen, is the impact standards can have 
across your organization, your industry, and the 
entire world. Alexei knows firsthand how 
internet and industry API standards reduce 
costs, help companies deal with regulation, and 

serve as the lubricant across your API operations. He explained how API 
standardization has changed the payments industry and has enabled global 
commerce across every country and region working with Adyen.

Alexei worked on the front lines of the payment API at Adyen, supporting the 
community through the company’s public portal by publishing documentation 
and other resources. Alexei saw the friction API consumers encountered when 

Alexei Akimov



Chapter 8 | The Essential Elements of API Technology 143

11.8 Applying Rules to API Operations
Machine-readable rules in YAML or JSON can be used to lint or validate any other YAML 
or JSON artifact. Rules allow for common or specialized procedures to be established to 
help check for consistency in the design, development, deployment, and management 
of APIs. Rules help codify standards and health practices for delivering APIs into the API 
life cycle across domains and teams.

putting their payment APIs to work in applications. He witnessed how standards 
like OpenAPI helped get everyone in his team on the same page. He also saw 
how industry standards like PSD2 got everyone on the same page across an 
entire geographic region. If you want to learn what is working with standards and 
what is not, the payments industry is a good place to start.

PSD2, which standardizes how payments work across European countries, 
shaped how Alexei did APIs at Adyen. We discussed how PSD2 is influencing 
payment API standards outside of the European Union, in South America, 
Southeast Asia, and other regions that are aiming to standardize payments 
across providers. These regions aren’t required to use PSD2, but standardization 
opens up opportunities for more frictionless interoperability between countries. 
The organic expansion of industry API standards around the globe is a cue for 
other industries to tune in and learn about how API standards can shift the 
landscape.

Alexei coherently described the impact of standards like OpenAPI, PSD2, JSON 
Schema, and others. But he also talked about the role of open source tools, 
which are exponentially amplified when supporting standardized specifications 
like OpenAPI, PSD2, and JSON Schema. Open source API tooling that leverages 
open source standards is what makes the API economy work. It is how we 
reduce costs, move quicker, and compete on the things that matter. Standards 
help us reduce complexity and increase our ability to manage not just hundreds, 
but thousands of APIs at scale.

I consider the financial space to be on the front line of determining how API 
standards will be defined across almost every other industry. The only other 
sector even close is healthcare. Other industry and trade organizations would be 
wise to study what is happening in finance and get to work on their own industry 
standards–then do the hard work of iterating and making them work at scale.



144 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

Name - “Name” here means the name of the linting rule, describing what it 
applies to and how it makes the design of an API or the operation around it 
more consistent.

Description - A verbose description states what a rule does, providing as 
much detail as possible about how the rule standardizes one small part of 
operations, helping to stabilize teams.

Given - A given is the property being targeted for linting, identifying a specific 
aspect of a contract that needs attention and focusing the attention of linters 
on this particular part of each API.

Then - “Then” is the criteria for evaluating the contract being limited. It 
provides the logic for the rule being applied.

Formats - Rules are designed to be applied to different types of contract 
formats, including Swagger, OpenAPI, AsyncAPI, and others.

Documentation URL - An external URL can be used for documentation and 
educational resources associated with a specific rule, turning every rule into a 
potentially teachable moment.

Rulesets - Organizing multiple rules into sets enables you to apply them all at 
once, organized by domain or other bounded context. Rulesets make rules 
easier to apply.

JSONPath - JSONPath is the specification used as part of the “given” and 
“then” properties to target specific sections of a JSON contract, providing any 
level of scope when linting contracts.

Rules help us distill all the things we need for usability, consistency, and stability into 
modular procedures that can be applied as sets or individually during design–and more 
importantly, throughout the API life cycle. In some cases we can gate rules at the 
pipeline level, ensuring we are always producing the best APIs we can, no matter what 
team produces them.

The leading approach for defining and executing rules is Spectral, an open source 
solution developed by an API service provider named Stoplight. It is common today to 
define Spectral rules to apply as part of the API design process, linting or validating the 
OpenAPI contract for an API. However, Spectral can be applied to any JSON object, 
making it easy to apply rules to any part of the API life cycle. 



Chapter 8 | The Essential Elements of API Technology 145

11.9 Embracing Federation 
Successful API transformation often takes advantage of federated approaches to 
governance. Federation acknowledges that the enterprise will always be defined by 
many smaller groups, domains, or states of business operation. These groups will need 
a certain degree of autonomy, but they can also leverage centralized structures, 
standards, and resources.

Principles - Principles strengthen the realization that API operations are 
perpetually realized and executed in a federated way across domains and 
teams, responding to the changing needs of the enterprise and the markets  
it serves.

Tooling - Tooling means perpetually defining the tools used in different 
domains and teams. You should allow teams to explore new tools, but have a 
formal process for weaving them into the overall API platform and stabilizing 
their use.

Lifecycle - Map out the life cycle employed across teams, identifying the 
common areas, but also the unique variations that should either remain 
specialized, or be shared across teams and centralized as part of governance.

Bounded Context - Define the existing organic lines that exist between teams 
and groups, then get to work understanding how these lines can be reshaped 
over time to optimize the vocabulary, standards, and life cycle teams use.

Policies - Craft policies centrally, then disseminate them across federated 
teams, including teams in the process of versioning and establishing a 
feedback loop between centralized and federated policies.

Automation - Equip teams with the artifacts and tools they need to automate 
governance, so that it can be centrally defined and consistent. Then enable 
teams to do the right thing with governance by automating redundant aspects.

Observability - Provide the observability necessary to “see” what is 
happening within and across domains, groups, and teams, helping ensure that 
APIs and the operations around them are as observable as possible, no matter 
who is behind them.



146 Part 02 | Technology and Governance Chapter 11 | Developing Governance and Standards

Champions - For federation to be successful, it requires the hard work of 
champions embedded within teams, groups, and domains–people who are 
willing to do the hard work of sharing knowledge, policies, and practices 
centrally and across enterprise teams.

Like centralization, there are upsides and downsides to federated governance. You will 
need to constantly evaluate and recalibrate what is done in a federated environment or 
centralized across teams. Federation provides the opportunity for us to embrace the 
sprawling organic nature of our operations and bring order to the way things are done 
at scale across teams.



147Chapter 12 | Reviewing Your Design and Governance

Reviewing the design and security of your APIs before they go into production ensures 
not only that they’ll meet your standards, but that they’ll be safer and easier for 
consumers to use. So how do you do that? This chapter offers tips and suggestions  
that will save you a lot of trouble down the road. 

12.1 Design and Quality Reviews 
Applying design reviews as part of the life cycle
API design reviews make you give pause before any API goes into production, making 
sure every API meets your organization’s design standards. Designers and developers 
should have a wealth of resources to help them design the best possible API before it 
ever gets submitted. Each API submitted as part of an API design review process should 
possess the necessary artifacts and elements needed to properly evaluate its design.

Workspace - Groundi API design reviews with a dedicated API workspace 
where you can find everything you need to review the state of the proposed 
API design from teams.

12
Reviewing Your Design 
and Governance



148 Part 02 | Technology and Governance

Contracts - There is always a contract available for the API, allowing self-
service automated review, but also to make sure the teams and reviewer are 
on the same page.

Documentation - Provide documentation for the entire surface area of an API, 
allowing human reviewers to understand the API, and teams to articulate the 
value.

Mock Server - Publish a mocked representation of APIs under review, allowing 
everyone involved to understand what an API does by playing with the mock 
server.

Process
Once you’re ready and have all the needed artifacts and elements, your API should be 
subjected to a well-defined process for reviewing its design and providing feedback, 
including whether it is ready for production.

Self-Service - Provide as much of the design review process and feedback as 
possible in a self-service format, with modular services, tooling, and rules for 
teams to use.

Timeline - Establish a timeline for how long design reviews should take, 
holding all stakeholders accountable achieving the desired outcomes within a 
specified timeframe.

Feedback - Provide formal, documented, and constructive feedback for teams 
about the design of their API, but also allow teams to provide feedback on the 
process. 

Outcomes - Defining the outcomes of a design review, regularly assessing the 
process and the reality on the ground with teams to make sure reviews provide 
value.

Design reviews should not be seen as yet another gate developers need to get through. 
They provide an opportunity for educating teams about best practices. They also 
establish a feedback loop with teams to help you learn where they need help.

Injecting quality reviews across APIs in development
A quality review, either manual or automated, can assess the overall quality of each API 
implementation, looking at how the API is being deployed and sustained. Quality 
reviews can be done at a certain milestone in API development, or exist as a checklist 
that teams can follow as they define, design, and deploy each API.



149Chapter 12 | Reviewing Your Design and Governance

Workspace - A quality review of a workspace can check that there is a logical 
name and description of the work occurring, while also considering visibility, 
RBAC, and other common concerns.

Repository - Linking Git repositories to API workspaces helps accommodate 
different sources of truth and development workflows, while helping keep API 
artifacts, services, and tools available for use across the API life cycle.

Documentation - Validating that documentation is available for each API helps 
reduce friction with consumers, ensuring they have adequate information 
about naming, descriptions, errors, authentication, and other aspects that 
could cause friction.

Examples - A quality review can check to see if there are examples available 
for each individual API path, channel, or other dimension, providing simple 
examples of what consumers can expect when integrating APIs into their 
applications.

Mock Server - Having a mock server makes it easy for onboarding and testing 
APIs, reducing friction for consumers who may want to play around with them 
as they consider adoption. 

Contract Testing – Require every API to possess contract testing for 100% of 
the surface area. That will provide you a nice baseline of quality, ensuring that 
every API respects the contract that was agreed upon by API producers and 
consumers. 

Performance Testing - Check to see if performance tests are included in 
quality reviews. They will help you further establish a baseline for quality.

Monitoring - A quality review can check API monitoring, for example, requiring 
that every API be monitored on a regular schedule. Results can be published to 
existing APM solutions or viewed via your API platform reporting.

Quality reviews can simply be a checklist to remind API developers and other 
stakeholders of what each API needs. They can also provide an opportunity for teams 
to review each other’s APIs, or leverage a centralized group to review every API as it 
moves to production. Quality reviews ensure that APIs are operated consistently across 
teams. They also give you an opportunity to engage with teams about how they deliver 
and iterate upon APIs and discover what they need to improve their processes.



150 Part 02 | Technology and Governance

12.2 Security Fundamentals and Reviews 
Security fundamentals
A security review provides an opportunity to pause and ensure that teams are thinking 
about safety early in the process. Cybersecurity is too important to be simply a concern 
of the gate team fear before an API moves into production. 

There are many security considerations teams should think about in the defining and 
designing phases to provide development teams, and eventually users, with more 
secure APIs.

Encryption - Make encryption the default for all APIs, covering the transport 
layer, but also storage and databases behind APIs.You should have a solid 
encryption plan from the start.

Authentication - Use common standards for authenticating API consumers 
using any API, reducing the complexity for them at this layer.

Authorization - Consider an added authorization layer that defines whichAPI-
driven resources and capabilities each consumer will be able to access once 
they start using your APIs.

Role-Based Access Control - Apply RBAC to all of the elements of API 
operations, defining who can edit or read artifacts, documentation, testing, 
and other elements.

Contracts - Each API possesses a complete contract, including full details of 
the authentication and authorization procedures. The contract acts as a menu 
of security features for each API.

Environments - Evaluate the development, staging, sandbox, and production 
environments teams will use and determine their security strategy.

Documentation - Include security fundamentals as part of the documentation 
for each API, making sure consumers are always fully aware of the controls in 
use.

Tests - Provide collection security tests–modular, reusable, executable, and 
fully documented tests for all of the most common vulnerabilities your teams 
will face.



151Chapter 12 | Reviewing Your Design and Governance

There is plenty more your security team will be considering when it comes to API 
security, but these fundamentals should be the baseline for your operations. Without 
these elements, it becomes very difficult to properly secure your APIs at scale. These 
are the building blocks that enable teams to deliver more secure APIs. Without having  
to become security experts themselves, they can enjoy the support of centralized 
security resources.

Checking for the OWASP Top 10 
When you’re injecting a required security review of an API, consider the OWASP Top 10 
as the starting point, running the following checks against every API before certifying it 
ready for production:

Broken Object Level Authorization - APIs tend to expose endpoints that 
handle object identifiers, creating a wide attack surface level access control 
issue via specific objects.

Broken User Authentication - Authentication mechanisms are often 
implemented incorrectly, allowing attackers to compromise authentication 
tokens to gain access.

Excessive Data Exposure - Developers tend to expose all object properties 
without considering their individual sensitivity, relying on clients to perform 
the data filtering.

Lack of Resources & Rate Limiting - Too many developers fail to impose any 
restrictions on the size or number of resources that can be requested by the 
consumer in any given time period.

Broken Function Level Authorization - Access control policies may be too 
complex with different hierarchies, groups, roles, and an unclear separation of 
resources.

Mass Assignment - If you bind client-provided data to data models without 
proper properties filtering, it could allow attackers to traverse and explore by 
guessing your structure.

Security Misconfiguration - Security misconfiguration is commonly a result of 
insecure default configurations, or incomplete or ad-hoc configurations by 
teams.



152 Part 02 | Technology and Governance

Injection - Injection flaws, such as SQL, NoSQL, and command injection, occur 
when untrusted data is sent to an interpreter as part of a command or query 
with a request.

Improper Asset Management - APIs tend to expose more endpoints than 
traditional web applications, making proper and updated documentation 
extremely important.

Insufficient Logging & Monitoring - Insufficient logging and monitoring, 
coupled with missing or ineffective integration with incident response, opens 
doors for attackers.

The OWASP Top 10 API vulnerabilities provide us with a baseline that should exist 
across 100% of the APIs in production, whether they are for internal, partner, or public 
consumers. There will be other security concerns as well, but if you make this list the 
default across your operations, you will significantly improve the reliability of your APIs.

This stage of the life cycle tends to get the most attention in technical conversations 
about delivering APIs–doing the work to bring each API to life. A well-defined API life 
cycle makes the development stage as efficient as possible, with developers doing 
what they do best.

Test
This area of the API lifecycle is focused on streamlining, documenting, and automating 
the testing of the underlying contract for each API. It is about understanding the overall 
performance of the API and its integration, and running other types of tests. Testing 
should include automation to properly scrutinize the entire surface area of each API, as 
well as the operations surrounding it, helping teams to do more work and consistently 
contribute to the quality of all APIs.

Collections - Use collections to define one or a sequence of many API 
requests, establishing a modular, collaborative, and executable artifact across 
API testing.

Scripts - Define folder-level, pre-request, or post-request scripts that will run 
as you configure requests, validate responses. Automate testing to run as you 
iterate and respond to consumer behavior.

Contract - Use OpenAPI and AsyncAPI contracts to ensure that 100% of the 
surface area of an API is tested and behavior reflects the contract between 
producer and consumer.



153Chapter 12 | Reviewing Your Design and Governance

Performance - Test Specific paths for each API in multiple regions to make 
sure if the API, gateway, and network provide desired performance.

Mocking - Use mock servers generated from the API contract, then augment 
them with examples for specific use cases, testing for specific outcomes.

Data - Inject CSV or JSON data as part of the testing process, making sure API 
requests reflect specific business workflows and outcomes.Testreal-world 
API-driven scenarios.

Monitor - Schedule testing monitors to run on a schedule reflecting the 
business needs of the API, but also the type of test being run, allowing teams 
to automate testing.

CI/CD Pipeline - Bake tests into CI/CD pipelines, ensuring that all tests run 
when APIs are being built and no API goes into production without tests.

While there are always nuances in testing an API, the majority of testing can be realized 
with these common elements. A consistent approach to testing across all APIs helps 
ensure quality and provides a consistent template for what testing is, allowing it to be 
used across all teams. 

Standardizing how teams test APIs is essential for achieving the reliability you will need 
across the thousands of APIs you will use to do business in the future.

Secure
This stage is about securing the access and operations surrounding each API, ensuring 
that only those who should have access are able to make requests and publish 
messages. Security is about establishing an organization-wide approach API 
authentication and encryption are applied. It is also about how APIs are fuzzed and 
scanned for vulnerabilities. You must provide teams with everything they need to 
secure each API and the operations around it, consistently securing the expanding  
ßAPI landscape.

Authentication - Authentication helps ensure APIs are accessed only by those 
who should have access, allowing API producers and consumers to easily 
apply rules consistently.

Authorization - Once a user is authenticated, the authorization layer will make 
sure they only have access to approved resources.



154 Part 02 | Technology and Governance

RBAC - Role based access controls should be applied at the authorization 
layer of an APIand to the API operations around it, helping govern who has 
access to operations.

Encryption - Ensure that all API requests are encrypted, and maket reading 
encrypted messages is as easy as possible.

Environments - Have a solid map of the development, staging, and production 
environments across all APIs in operation. That will help you manage API 
deployment more consistently.

Variables - Provide a well-defined vocabulary of variables that abstract away 
the common aspects of authentication and authorization, helping standardize 
the way we engage with APIs.

Secrets - Add a layer on top of environmental variables specifically for 
managing secrets, making sure you have clear visibility and control of secrets 
and tokens being applied.

OWASP Top 10 - The OWASP Top 10 is a standard for API producers, covering 
a broad consensus about the most critical security risks for web APIs and 
providing a consistent checklist for teams to follow.

There are many layers of security for producing and consuming APIs.Organizations are 
increasingly making security a priority earlier in the API life cycle, instead of after an API 
goes live. This evolution is often described as shifting left, or investing in security earlier 
in the life cycle and equipping API teams with proven approaches to delivering more 
secure APIs.

API security doesn’t stop at authentication and authorization of each API. It should 
include data in transport, the operations around each API, and security concerns for 
both producers and consumers. A known API life cycle, combined with well-defined 
security practices, gets teams up to speed with what matters most to secure APIs.

Deploy
Once an API is ready for deployment to a staging or production environment, there 
should be a repeatable set of elements at work to move enterprise operations forward 
at scale. The deployment orchestration of APIs across teams helps optimize the API 
factory floor across enterprise domains, making every step forward deliberate and 
repeatable.



155Chapter 12 | Reviewing Your Design and Governance

Source Control - Use source control to manage code and artifacts used to 
deploy an API, providing a single location where you can find everything 
behind each version of an API, ideally with multiple branches to accommodate 
many API contributions.

CI/CD Pipeline - The pipeline ensures that the deployment of an API to each 
stage is as repeatable as possible, with tests and other essential needs of the 
API build process.

Gateway - Publish contracts, extensions, and other configurations to the API 
gateway, deploying an API into a staging, then a production environment if all 
tests pass in the pipeline.

Policies - Require all APIs to be deployed according to a standardized set of 
plans, with consistent policies limiting access to resources, applying proper 
security, and ensuring a consistent deployment across all teams.

Releases - Establish a formal release for each version of an API, documenting 
the changes being deployed and the communication about them, keeping 
consumers informed by rolling up all the branches and changes into a single 
release.

Stages - Allowing multiple stages to be deployed, providing development, 
staging, production, and potentially other environments for deploying and 
testing. That will enable APIs to be reliably deployed into production with the 
highest possible quality.

Environments - Apply commonly managed environments with a coordinated 
variable strategy for testing and automating configuration as part of the 
pipeline, helping abstract away the technical details and secrets of API 
environments.

Observability - Once an API has deployed, what observability do you have 
over the build process? What about observability of the API once it is 
available? You need to ensure that you see what is happening during 
deployment, just as you do for e all other stages of the API life cycle.

Deployment means different things to different organizations. What is important is that 
there is always a source of truth; a repeatable build process; and a standard set of 
releases, stages, environments, and plans to deploy APIs consistently across teams  
and domains.



156 Part 02 | Technology and Governance

Like the software development life cycle (SDLC), the API life cycle should be well-
defined and repeatable. The big difference is, the API lifecycle should also possess a 
handful of nuances that help reliably deliver API infrastructure using API gateways, 
policies, and observability practices.

Observe
Observability provides teams with the ability to “see” APIs and the operations around 
them using a set of common metrics, helping provide the data they need to move each 
API forward independently of others.

Activity - You must understand the activity across an API platform to 
understand how APIs are being moved forward, configured, and evolved over 
time by tapping infrastructure outputs, ensuring there is provenance for 
change throughout the API lifecycle.

Logs - Actively use  logs for source control, CI/CD, and the gateway. They 
provide the outputs you need to understand the velocity of individual APIs, as 
well as velocity across domains.Tap into existing logging outputs to observe 
the state of each API.

Traces - Leverage traces added to clients, SDKs, gateways, and other 
functions. They will help you make sense of the API landscape and how APIs 
are putting backend infrastructure to work, using unique identifiers that are 
passed to APIs and tracked all the way to backend systems.

Monitors - Establish monitors for all contract, performance, security, and 
governance tests. These tests provide the results you need to understand the 
state of APIs and all API operations. Use collections to define the outputs you 
need to understand the state of your APIs.

APM - Route all outputs from API operations into your existing APM solutions, 
tapping every output across the API life cycle to understand the health and 
state of the platform through the infrastructure you have already invested in.

Dashboards - Set up dashboards within the APM to understand the health of 
individual APis and the life cycle around them, providing a visual way for 
anyone to observe the state of any API and how it is being operated.

Reports - Providing team, API, documentation, testing, and other reporting, 
showing what teams are doing across API operations, and how the lifecycle is 
unfolding across teams, using native platform reporting that speaks 
specifically to API operations.



157Chapter 12 | Reviewing Your Design and Governance

Notifications - Use notifications and alerts to observe changes with each API, 
as well as events that occur across the life cycle. They will help you 
understand consumer activity, as well as what is happening across teams and 
other stakeholders.

Observability is a measure of how well internal states of a system can be inferred from 
knowledge of its external outputs. You need to tap into all of the outputs available 
across the API platform and the infrastructure used to move APIs forward across the 
API life cycle into production. 

Because our infrastructure has APIs, we can use collections to define each aspect of 
API operations as a machine-readable, executable, and granular output that routes  
data into our APM solutions. That helps make 100% observability an achievable goal  
for your teams.

Distribute
An API does little good if it can’t be found and put to use. Distributing an API, as well as 
the supporting operations around it, ensures that consumers can find it when building 
applications and integrations. It also means, teams will be less likely to create redundant 
APIs.
 

Portal - API deployed into production should be published to the central 
portal, providing centralized access to internal or external consumers through 
a single doorway that can be supported as part of overall API operations.

Catalog - The metadata for each API should be updated and kept in sync, 
ensuring that all relevant information consumers will need is available in the 
catalog and keeping the catalog up to date.

Network - API should be published to the private, partner, and public networks 
where API consumers are via the platforms they are already using. Tap into 
existing API consumers so your developers can meet them where they are.

Workspace - The workspaces around an API should also be made available via 
the network, providing teams and consumers access to API operations.. 
Expose, not just the APIs, but also the work, artifacts, and resources behind 
them.

Visibility - The visibility of each APIic should be deployed deliberately and 
confidently, making t sure each API is available to consumers, and striking the 
balance between access and control to meet desired business outcomes.



158 Part 02 | Technology and Governance

Content - Publish blog posts, videos, and other content to support the 
distribution of APIs, articulating the value an API delivers in a way that is 
discoverable by consumers. Remember to include rich keywords and other 
necessary metadata.

Buttons - The documentation, tests, and even the workspace behind an API 
should be made available via blog posts, videos, wikis, and other resources 
available to support APIs. Use embeddable buttons that consumers can 
activate with one click.

Search - APIs and the operations around them should be indexed and made 
available via search. That gives teams, business stakeholders, and consumers 
the ability to search for and find what they need before building new APIs, 
applications, or integrations.

The distribution of APIs plays an essential part in both production and consumption. 
Developers’ lack of attention to distribution impacts discovery and feedback loops for 
APIs, limiting usage and depriving them of valuable information they could use to iterate 
and provide consumers with features they want.

Developers can distribute APIs, but it is best done by product managers, marketers, and 
others who are more attuned to business needs. They will be sure to select the right 
metadata and ensure that r portals, catalogs, networks, and content are closely aligned 
with business goals. 

API consumers need all the help they can get with observability so that they can 
regularly see and understand what is happening with their integrations. APIs are 
abstract, and it can be difficult to see individual and community use. That’s where you 
can step in and help.

While API consumers will care a lot more about their own API consumption, the usage 
and feedback by others within the community will also play a role in how they view a 
platform, and will influence decisions they make moving forward.

12.3 What Good Governance Looks Like 
An API-first enterprise understands that good operations are defined by enabling teams 
to do the right thing on the ground floor. Good governance establishes a clear list of 
tools developers need for producing and consuming APIs, and makes sure they have 
access to them. Governance should augment the work of various teams involved in 
bringing APIs to life and putting them to work in the applications and integrations that 
power today’s businesses.



159Chapter 12 | Reviewing Your Design and Governance

Platform - Set up your API platform, beginning with your source control, CI/CD, 
gateways, and APM. Then evolve it towards other stops along the API life 
cycle, taking full advantage of the APIs behind your infrastructure to stabilize 
your developers.

Integrations - Lean on industrial-grade integrations to bring together the 
services you need to make producing and consuming APIs as seamless as 
possible for all stakeholders. Realize that APIs aren’t just for applications–they 
are also needed behind APIs.

Tooling - Empower developers with the tools they need, providing bedrock 
tooling like source control, CI/CD, and IDE. Encourage exploration of new 
commercial and open source tooling, providing tracks to formalize team 
adoption.

Collaboration - Modern API development teams aren’t locked away anymore. 
Producing and consuming APIs is a team effort across business and technical 
groups, providing a huge opportunity to improve productivity through more 
collaboration.

Automation - Help teams automate at every turn, documenting and then 
automating common processes that do not need human execution and 
intervention. Equip teams to bake workflows into the CI/CD pipeline as part of 
their work.

Observability - Make observability available to teams, allowing them to 
understand the health of their APIs and how they compare to other teams’ 
work. Encourage teams to learn from other teams and allow them to pick up 
new skills. 

Remember, the success of your governance is a direct reflection of the enablement you 
provide to teams. Nobody on the ground floor cares about governance, but they do 
want to be supported in doing the right thing. That support is much easier to provide 
with an API-first platform approach. When teams are fully equipped with the right 
training and tools to do the right thing in the moment, you will begin to see productivity 
and quality shift into a higher gear.

Teams across API operations will not always be aware of your strategy or care about the 
long-term impact of API governance. What teams want is to be enabled to solve the 
problems they have been tasked with. With good governance in place, you can make 
their workdays easier and more productive. 



03Operations





162 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

API operations often sprawl across the enterprise, led by different teams with 
conflicting ideas about how to manage them. As a result, many organizations fail to 
understand their API consumption, and their API products may be marred by operational 
and security problems.

By understanding the API producer and consumer life cycles and organizing your API 
operations into well-defined phases, you will reduce friction and complexity and gain a 
comprehensive view of APIs throughout your organization—while still giving your teams 
the freedom they need to innovate. This chapter shows you how to do it.

13.1 Aligning Your Organization for APIs
Dividing your organization into intentional operational areas is one of the first steps of 
your API-first transformation. It will shape how your digital resources and capabilities 
are made available and provide a grounding force for your API life cycles and 
governance. Organizing your API operations into deliberate bounded contexts reduces 
complexity and eliminates the unknowns across your digital enterprise landscape.

Domains - Translate the traditional lines of business or tribal boundaries that 
have emerged over the years into more deliberate spheres of activity and 
knowledge. That will help you establish bounded contexts for operations, 
reducing the cognitive load while delivering meaningful API products.

13
Alignment and Life Cycles



Chapter 8 | The Essential Elements of API Technology 163

Groups - Establish designated groups within the enterprise that reflect 
specific business domains or provide cross-cutting contributions to the API life 
cycle. That will ensure that API operations–and their underlying infrastructure, 
workspaces, and teams–are logically grouped to deliver the most effective 
outcomes. 

Teams - Establish a profile for every human or automated persona that 
contributes to the API life cycle. Providing a context for individual stakeholders 
will accelerate the API lifecycle and help move APIs forward at scale. 

Roles - Assign a specific role to each team member, establish access controls 
to keep teams from stepping on each other’s toes, and stabilize the changes 
made across operations. 

Single-Sign-On - Provide teams with an authentication scheme allowing them 
to log in with a single ID across the multiple services they will need to deliver 
APIs across the API life cycle.

System for Cross-domain Identity Management (SCIM) - Adopt a System for 
Cross-domain Identity Management, or SCIM, a standard for automating the 
provisioning and de-provisioning of team member accounts across API 
operations. A SCIM will make it easier to manage the large number of users 
required to deliver and operate your APIs.

API operations can be sprawling, creating friction and challenges among people and 
teams. Much of the friction can be alleviated with a little organizational alignment. Team 
composition changes regularly, with t members constantly coming and going. That’s not 
necessarily bad, but you need structure and automation to ensure people are doing 
what they should be doing across the API life cycle. Organizational alignment also helps 
reduce friction over time between development and business teams as your company 
shifts to meet the needs of your industry.



164 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

API Producer and Consumer Equilibrium 

13.2 The Producer Life Cycle
Every API begins with an API producer who makes some digital resource or capability 
available via their desired protocol. In the typically chaotic, ad hoc approach 
organizations use to deliver APIs for one-off projects and applications, APIs vary in how 
they are brought to life and sustained to support an application or integration. Every 
enterprise API strategy centers around identifying the many different life cycles in 
motion across operations and then working to bring them all into alignment through a 
common, well-known API lifecycle.

Ask about your organization’s API life cycle, and you will likely get many different 
responses. The narrative we’ve been told about the API life cycle for the past decade 
has been heavily skewed toward the API producer. Vendors selling their solutions, 
supported by industry analysts, were very interested in imparting their vision of the API 
life cycle to the industries impacted by APIs. This narrative would be sufficient if we 
used a single vendor across the entire API life cycle, but the reality is that teams are 
using many different vendors.

There is no single definition of the life cycle for delivering APIs. It is up to your 
organization to settle on a common understanding of each step and the business and 
technical details required. Just as you do with design and governance, you need to 
work towards achieving consistency in your API life cycle. This is not an easy thing to 
do. Begin by agreeing on a simple outline of each stop along your API life cycle. Then 
invest in fleshing out the details, and consider adopting rules for as many parts of the 
process as possible.

Evaluate

Discover

Design

Define

Develop

Test

Secure

Deploy

Observe

Distribute

Integrate

Test

Deploy

Observe

Producer
Lifecycle

Consumer
Lifecycle



Chapter 8 | The Essential Elements of API Technology 165

The lifecycle blueprints in this book are meant to show you the most common stops along 
the API life cycle and provide some details to consider as you assemble your own API life 
cycle definition. These blueprint elements are just a handful of the technical details you 
can use to map out the processes across your teams and domains. They are meant to 
provide you with suggestions for how you can iterate to improve your processes based 
on what is happening. The objective is to establish a common way for teams to talk about 
what the API lifecycle is, and begin to establish alignment in the way APIs are delivered.

Having an API life cycle definition for your operations offers a grounding force, not just 
for how you deliver APIs, but how you talk about them. The grounding of the API life 
cycle is where to begin if you want to improve productivity across your teams, increase 
the quality of your APIs, and make API governance possible.

Define
APIs are a very abstract digital concept, loosely wrapping a variety of text, 
documentation, artifacts, and code that define what an API is capable of doing. A 
thoughtful API life cycle begins by sitting down with all stakeholders and finding a 
common way of defining each API and how it will move forward over time. 

Requirements - What are the requirements for the API? You need to define the 
business value it will bring to help you guide development and operation.
Stakeholders - Identify business and technical stakeholders, including any 
external partners and consumers who might need to be involved.

Domain - What domain will an API be operating in?, Define the vocabulary, 
standards, and other patterns that developers at design and development 
teams will use.

Regions - Identify the region(s) where an API will operate so that you can 
comply with regulations and other business requirements and ensure that APIs 
are as close to consumers as possible.

Teams - Line up who will be working on an API, bringing together designers, 
developers, technical writers, QA specialists, and other roles who will be 
involved in moving your APIs forward.

Roles - Define who will have access to what in terms of editing, viewing, and 
working with APIs, and the operations that move them forward.

Workspaces - Set up the workspaces where teams will be designing, 
developing, and managing APIs, then iterating upon them and managing 
multiple versions.



166 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Change - Establish the underlying approach for managing change with an API, 
keeping the versioning, communication, and other elements in alignment with 
centralized governance.

Road Map - Create a road map for each API, planning for the future from Day 
One. 

A well-executed definition of the API life cycle lays the important groundwork that will 
contribute to its usability. You are providing the API with the nutrients it needs to 
operate. The definition stage may seem like an easy one to skip, but in reality, it is the 
most important place to begin, laying the foundation for almost every other stop along 
the way and contributing to velocity. 

Design
In the design phase, you invest in the informed design of the surface area of each API, 
shaping how it works, the protocols and standards it uses, and how each API will 
conform to wider rules across the organization. Investment in the design of each API, as 
well as the overall practice of design across operations, fine-tunes your operations and 
brings operations into alignment.

Patterns - Select which patterns you will use–such as REST, GraphQL, and 
other common varieties. Patterns will standardize how your APIs work and 
help designers and developers choose the right tools for the job.

Protocol - Make a sensible decision about which protocol to use designing an 
API, picking the right solution for the project and for the consumers who will be 
using the product.

Standards - Understand the internet, industry, and organizational standards 
you will use when designing the API, making sure that each API is as consistent 
as possible.

Schema - Establish a schema for all of the objects used as part of requests, 
responses, publishing, and subscribing when integrating an API into 
applications.

Contracts - Put contracts like OpenAPI and AsyncAPI to work in defining the 
surface area of each API, providing a machine-readable contract to guide 
teams’ work.

Versioning - Change is inevitable. You need a clear plan for how an API will be 
versioned, leveraging a common pattern for managing change.



Chapter 8 | The Essential Elements of API Technology 167

Rules - Identify which linting rules you will need to help ensure the API is 
following central governance and remaining as consistent as possible across 
teams. 

Editor - Establish a common, consistent way of directly or visually editing the 
artifacts used in the API design process, helping clarify the carry load of the 
design.

Examples - Try to provide examples of each part of an API, making actual 
examples part of each contract that can be used for documentation and 
mocking.

Mocks - Generate a mock representation of an API using its contract, 
providing an example of what the API will do in production. That will help with 
the design process and later on, with onboarding.

Design is often discussed in terms of RESTful or web APIs, but this is a universal look at 
design that can be applied to both synchronous and asynchronous APIs. Design is 
applied across a variety of API patterns, so you should define a common way to 
eventually describe and discuss design across all APIs.

Develop
This stage is about bringing an API to life. That means assembling all the infrastructure 
needed and generating any skeletons, using frameworks, assembling, and hardening an 
APIs functionality. The Development might take a design-led approach or a code-led 
approach. Either way, as long as it follows a common life cycle, it can benefit operations.

Compute - Establish a baseline for the underlying API compute, choosing 
among virtual servers, containers, and serverless to power each API.

Database - Provide the data storage and querying requirements for an API, 
leveraging a centralized database or establishing a database for use by this 
single API resource.

Storage - Define the centralized storage for an API, planning where objects, 
images, and other files will be stored, retrieved, and managed as part of API 
usage.

DNS - Apply a consistent approach to using DNS for each API, following a 
larger domain strategy but allowing for flexibility and redundancy in accessing 
each API.



168 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Encryption - Ensure that encryption is the default in transport and storage, 
and make sure each individual API applies these security controls from the 
beginning, not as an afterthought. 

Frameworks - Generate frameworks as the scaffolding for each API, leveraging 
consistent approaches, avoiding redundant work and using the API contract to 
produce as much code as possible.

Gateways - Set up the gateway to prepare for an API deployment. Do the 
initial work to set up everything needed at the gateway layer, shifting as much 
of this work as far to the left in the life cycle as possible.

Annotations - Use code annotations to auto-generate the contracts you need 
to document, test, secure, and govern the API, leaning on a code-led approach 
to APIs.

Integrated Development Environment (IDE) - Maximize productivity across 
teams by providing further enablement via their trusted IDE, helping to 
increase developer productivity.

Source Control - Establish a Git repository for managing all the code and 
artifacts for an API. That will help you establish source control for each API 
early in the API life cycle.

This stage of the life cycle tends to get the most attention in technical conversations 
about delivering APIs–doing the work to bring each API to life. A well-defined API life 
cycle makes the development stage as efficient as possible, with developers doing 
what they do best.

Test
This area of the API life cycle is focused on streamlining, documenting, and automating 
the testing of the underlying contract for each API. It is about understanding the overall 
performance of the API and its integration and running other types of tests. Testing 
should include automation to properly scrutinize the entire surface area of each API, as 
well as the operations surrounding it, helping teams do more work and consistently 
contribute to the quality of all APIs.

Collections - Use collections to define one or many API requests, establishing 
a modular, collaborative, and executable artifact used across API testing.



Chapter 8 | The Essential Elements of API Technology 169

Scripts - Define folder-level, pre-request, or post-request scripts that will run 
as you configure requests, validate responses, and automate testing to run as 
you iterate and respond to consumer behavior.

Contract - Use OpenAPI and AsyncAPI contracts to ensure that 100% of the 
surface area of an API is tested and behavior reflects the contract between 
producer and consumer.

Performance - Test specific paths for each API in multiple regions to make 
sure the API, gateway, and network provide the desired performance. 

Mocking - Use mock servers generated from the API contract, then augment 
them with examples for specific use cases, testing for specific outcomes. 

Data - Inject CSV or JSON data as part of the testing process, making sue API 
requests reflect specific business workflows and outcomes. Test real-world 
API-driven scenarios.

Monitor - Schedule testing monitors to run on a schedule reflecting the 
business needs of the API, but also the type of test being run, allowing teams 
to automate testing.

CI/CD Pipeline - Bake tests into CI/CD pipelines, ensuring that all tests run 
when APIs are being built and no API goes into production without tests.

While there are always specific nuances to testing an API, the majority of testing can be 
realized with these common elements. A consistent approach to testing across all APIs 
helps ensure quality and provides a consistent template for what testing is, allowing it to 
be governed across all teams. Standardizing how teams test APIs is essential to 
achieving the reliability you will need across the thousands of APIs you will use to do 
business in the future.

Secure
This stage is about securing the access and operations surrounding each API, ensuring 
only those who should have access are able to make requests and publish messages. 
Security is about establishing an organization-wide approach to how API authentication 
works and how encryption is applied, as well as secrets, roles, and the way APIs are 
fuzzed and scanned for vulnerabilities. You must provide teams with everything they 
need to secure each API and the operations around it, consistently securing the 
expanding API landscape.



170 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Authentication - Authentication helps ensure APIs are accessed only by those 
who should have access, allowing API producers and consumers to easily 
apply rules consistently.

Authorization - Once a user is authenticated, the authorization layer will make 
sure they only have access to approved resources. 

RBAC - Role-based access controls should be applied at the authorization 
layer of an API and to the API operations around it, helping govern who has 
access to operations.

Encryption - Ensure that all API requests are encrypted, and make reading 
encrypted messages as easy as possible.

Environments - Have a solid map of the development, staging, and production 
environments across all APIs in operation. That will help you manage API 
deployment more consistently.

Variables - Provide a well-defined vocabulary of variables that abstract away 
the common aspects of authentication and authorization, standardizing the 
way teams engage with APIs.

Secrets - Add a layer on top of environmental variables specifically for 
managing secrets, making sure you have clear visibility and control of secrets 
and tokens being applied.

OWASP Top 10 - The OWASP Top 10 is a standard for API producers, covering 
a broad consensus about the most critical security risks for web APIs and 
providing a consistent checklist for teams to follow.

There are many layers of security for producing and consuming APIs. Organizations are 
increasingly making security a priority earlier on in the API life cycle instead of after an 
API goes live. This evolution is often described as shifting left, or investing in security 
earlier in the life cycle and equipping API teams with proven approaches to delivering 
more secure APIs.

API security doesn’t stop at the authentication and authorization of each API. It should 
include data in transport, the operations around each API, and security concerns for 
both producers and consumers. A known API life cycle, combined with well-defined 
security practices, gets teams up to speed with what matters most for securing APIs.



Chapter 8 | The Essential Elements of API Technology 171

Deploy
Once an API is ready for deployment to a staging or production environment, there 
should be a repeatable set of elements at work to move enterprise operations forward at 
scale. The deployment orchestration of APIs across teams helps optimize the API factory 
floor across enterprise domains, making every step forward deliberate and repeatable.

Source Control - Use source control to manage code and artifacts used to 
deploy an API, providing a single location where you can find everything 
behind each version, ideally with multiple branches to accommodate many API 
contributions.

CI/CD Pipeline - The pipeline ensures that the deployment of an API to each 
stage is as repeatable as possible, with tests and other essential needs of the 
API build process making API deployment as repeatable as possible across 
teams.

Gateway - Publish contracts, extensions, and other configurations to the API 
gateway, deploying an API into a staging, then a production environment if all 
tests pass in the pipeline.This gives you a repeatable way of managing 
gateways.

Policies - Require that all APIs be deployed according to a standardized set of 
plans, with consistent policies, limited access to resources, and proper 
security controls, ensuring a consistent deployment across all teams.

Releases - Establish a formal release for each version of an API, documenting 
the changes being deployed and the communication about them. Keep 
consumers informed by rolling up all of the branches and changes into a single 
release.

Stages - Allow multiple stages to be deployed, providing development, 
staging, production, and potentially other environments for deploying and 
testing APIs. That will allow APIs to be reliably deployed into production with 
the highest possible quality.

Environments - Apply commonly managed environments, with a coordinated 
variable strategy for testing and automating configuration as part of the 
pipeline, helping to abstract away the technical details and secrets of API 
environments.



172 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Observability - Once an API has deployed, what observability do you have 
over the build process? What about observability of the API once it is 
available? You need to ensure that you see what is happening during 
deployment, just as you do for all other stages of the API life cycle. 

Deployment means different things to different organizations. What is important is that 
there is always a source of truth, a repeatable build process, and a standard set of releases, 
stages, environments, and plans to deploy APIs consistently across teams and domains.

Like the software development life cycle (SDLC), the API life cycle should be well-
defined and repeatable. The big difference is, the API lifecycle should also possess a 
handful of nuances that help reliably deliver API infrastructure using API gateways, 
policies, and observability practices.

Observe
Observability provides teams with the ability to “see” APIs and the operations around 
them using a set of common metrics, helping provide the data needed to operate and 
move forward each API independently of others.

Activity - You must understand the activity across an API platform to 
understand how APIs are being moved forward, configured, and evolved over 
time by tapping infrastructure outputs, ensuring there is provenance for 
changes throughout the API lifecycle.

Logs - Actively use logs for source control, CI/CD, and the gateway. They 
provide the outputs you need to understand the velocity of individual APIs, as 
well as velocity across domains. Tap into existing logging outputs to observe 
the state of each API.

Traces - Leverage traces added to clients, SDKs, gateways, and other 
functions. They will help you make sense of the API landscape and how APIs 
are putting backend infrastructure to work, using unique identifiers that are 
passed to APIs and tracked all the way to backend systems.

Monitors - Establish monitors for all contract, performance, security, and 
governance tests. These tests provide the results you need to understand the 
state of APIs and API operations. Use collections to define all of the outputs 
you need to understand the state of your APIs.



Chapter 8 | The Essential Elements of API Technology 173

APM - Route all outputs across API operations into your existing APM 
solutions, tapping every output across the API life cycle to understand  
the health and state of the platform through the infrastructure you have 
already invested in.

Dashboards - Set up dashboards within your APM to understand the health  
of individual APIs and the life cycle around them, providing a visual way for 
anyone to observe the state of any API and how it is operated.

Reports - Provide team, API, documentation, testing, and other reporting, 
showing what teams are doing across API operations and how the lifecycle is 
unfolding across teams. Use native platform reporting that speaks specifically 
to API operations.

Notifications - Use notifications and alerts to observe changes with each  
API, as well as events that occur across the life cycle. They will help you 
understand consumer activity, as well as what is happening across teams  
and other stakeholders.

Observability is a measure of how well internal states of a system can be inferred from 
knowledge of its external outputs. You need to tap into all the existing outputs available 
across the API platform and the infrastructure used to move APIs forward across the 
API life cycle into production. 

Because our infrastructure has APIs, we can use collections to define each aspect  
of API operations as a machine-readable, executable, and granular output that routes  
data into our APM solutions. That helps make 100% observability an achievable  
goal for your teams.

Distribute
An API does little good if it can’t be found and put to use. Distributing an API, as well as 
the supporting operations around it, ensures that consumers can find it when building 
applications and integrations. It also means teams will be less likely to create redundant APIs.

Portal - An API deployed into production should be published to the central 
portal, providing centralized access for internal or external consumers through 
a single doorway that can be supported as part of overall API operations.

Catalog - The metadata for each API should be updated and kept in sync, 
ensuring that all the information consumers will need is available in the catalog 
and keeping the catalog up to date.



174 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Network - APIs should be published to the private, partner, and public 
networks where API consumers are, via the platforms they are already using. 
Tap into existing network effects for API consumers so your developers can 
meet them where they already are.

Workspace - The workspaces around an API should also be made available via 
the network, providing teams and consumers access to API operations. behind 
APIs. Expose not just the APIs, but also the work, artifacts, and resources 
behind them.

Visibility - The visibility of each API, whether it is private, partner, or public, 
should be deployed deliberately and confidently, making sure each API is 
available to consumers and striking a balance between access and control to 
meet desired business outcomes.

Content - Publish blog posts, videos, and other content to support the 
distribution of APIs, articulating the value an API delivers in a way that is 
discoverable by consumers. Remember to include rich keywords and other 
necessary metadata. 

Buttons - The documentation, tests, and workspace behind an API should be 
made available via blog posts, videos, wikis, and other resources to support 
APIs. Use embeddable and actionable buttons that consumers can activate 
with one click.

Search - APIs and the operations around them should be indexed and made 
available via search. That gives teams, business stakeholders, and consumers 
the ability to search for and find what they need before building new APIs, 
applications, or integrations.

The distribution of APIs plays an essential part in both production and consumption. 
Developers’ lack of attention to distribution impacts discovery and feedback loops for 
APIs, limiting usage and depriving them of valuable information they could use to iterate 
and provide consumers with features they want. 

Developers can distribute APIs, but it is best done by product managers, marketers, and 
others who are more attuned to business needs. They will be sure to select the right 
metadata and ensure that portals, catalogs, networks, and content are closely aligned 
with business goals. 



Chapter 8 | The Essential Elements of API Technology 175

13.3 The Consumer Life Cycle
The value of an API is defined by those who consume it. The direction and velocity an 
API takes is a shared journey between the API producer and consumer. Business value 
is not created simply by producing an API. API producers and consumers must have a 
shared understanding of what is happening, and where things are going. The greatest 
challenges across the API life cycle and API operations occur when producers and 
consumers fall out of alignment and friction is introduced into the relationship.

API consumption is about better defining how internal and external consumers put the 
API you produce to work in their applications and integrations. Good API producers are 
also API consumers. You cannot talk about producing APIs without talking about API 
consumption. This dance requires empathy. If you fail to deliver APIs that get used, you 
likely lack the empathy to deliver what consumers need. The health and viability of your 
API operations depend on having a properly defined API consumption life cycle, as well 
as a properly defined API producer life cycle. 

The API consumption life cycle begins with knowing who your consumers are. You know 
who they are. You know where they spend their time. You regularly engage with them to 
understand their experience and needs. These API consumer conversations are hard to 
do consistently or at scale if you don’t have a common definition of the consumer life 
cycle. Without an ongoing understanding of your API consumers, your API capabilities 
and experiences will begin to fall flat, missing what is needed. Without an active 
feedback loop with the right segments of your API consumers, your API will lack the 
nutrients it needs to iterate, evolve, and deliver the success you are looking for.

The API consumption life cycle discussion continues with creating a plan for how you 
consume infrastructure, partner, and third-party APIs. Without a consistent definition of 
your API consumption life cycle, each API integration you do will be a special 
snowflake–a custom affair. But if teams have a shared vocabulary for talking about the 
API life cycle, they can follow a consistent approach for putting external APIs to work 
across operations in a reliable and repeatable way. Every business application, system, 
and infrastructure element you put to work in your business should have an API, or you 
shouldn’t be using it. 

It is easy to ignore your API consumers when you are an API producer. But it is very 
painful to be ignored when you are consuming a third-party API. Recognizing and 
understanding your consumers’ pain is the only true way you will develop the empathy 
you need for your API-first transformation.

Discover
Discovery means enabling API consumers to find exactly the right API they need for 



176 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

their application or integration. It also means giving consumers everything they will 
need to onboard with an API. ng Consumers need to assess the overall quality and 
reliability of the API, then get to work integrating it into their use case, no matter what 
language they are using.

Search - Consumers should be able to search for APIs on the interfaces they 
are already using, allowing for the discovery of API information in a manner 
relevant to their work.

APIs - The contracts and other artifacts that define the surface area of an API, 
including authentication and authorization, should be discoverable as part of 
regular operations.

Documentation - Up-to-date and accurate documentation for all APIs should 
be easily discoverable by teams, with human-readable details describing what 
is possible with each API.

Tests - Contract, performance, integration, and user acceptance tests should 
be made searchable by consumers.

Workspaces - Alongside Git repositories, you should include private, partner, 
and public workspaces as part of discovery, indexing the places where all 
work occurs for each API.

Teams - The teams behind APIs, and any partner or public contributors, 
should be made discoverable alongside documentation and other data, 
encouraging engagement.

Workflows - Common workflows using APIs should be made discoverable, 
helping business and technical stakeholders implement those they need.

Changes - Multiple versions of each API should be made discoverable, 
indexing each API release and the communications surrounding it to help 
consumers easily get up to speed.

Every moment consumers spend looking for an API, trying to find the latest version, and 
understanding what it does restricts the forward motion of a team, domain, and 
organization. Clearly, consumer discovery is an API priority to invest in.

Discovery entails a number of challenges for enterprises. As with other types of content 
and media, API consumers are unlikely to spend much time looking for APIs before they 
go elsewhere, or begin building what they need themselves. It is essential to view the 
concept of API discovery from the perspective of your consumers. 



Chapter 8 | The Essential Elements of API Technology 177

Evaluate
Once consumers discover an API, they need time to evaluate whether it meets their 
needs. Do yourself a favor by providing a streamlined, hands-on experience, allowing 
consumers to play with real functionality and learn about resources and capabilities by 
doing something, rather than just reading about it. Giving them the information they 
need to make an educated decision about whether an API will satisfy their needs makes 
them feel empowered and helps them understand how the API fits into the business 
solution they want to build.

Explore - Enable consumers to explore as much of the surface area of an API 
as possible, perhaps without even authenticating, so they can learn what is 
possible.

Execute - Provide the ability to execute each request, response, publish, and 
subscribe, making sure that learning about an API is as hands-on as it can 
possibly be. 

Examples - Make sure there are always examples for each element of an API, 
allowing API contracts to be mocked and providing rich documentation 
showing how they work.

Documentation - Provide rich documentation with useful descriptions, 
examples, and other information to help consumers get started using each 
API.

Workflows - Go beyond reference documentation and provide actual business 
workflows consumers can use to accomplish their workplace goals. 

Demonstrate - Show consumers how the API works, providing tutorials, 
videos, stories, and other content demonstrating what is possible when you 
integrate APIs into applications.

Forking - Make your documentation, mock servers, tests, and workflows 
forkable, enabling consumers to fork artifacts that help them onboard and 
start using your APIs faster.

Feedback - Make it easy for consumers to provide feedback as they evaluate 
an API, capturing as much data from their experience as possible to inform 
your API roadmap.



178 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Investing in the evaluation stage of a consumer-centric API life cycle helps reduce 
consumers’ time to first call, or more importantly, time to first transaction. You are 
making it as easy as possible for consumers to begin generating value in their 
applications and on the API platform.

There are many signals consumers consider when evaluating an API. This is the stage of 
the consumer life cycle where you are most likely to lose partners and public users, who 
may have other options for APIs. Your internal users may have other options as well. But 
if they don’t, make it easy for them instead of creating friction. 

Integrate
There are many ways for consumers to develop against an API. It used to be enough to 
provide snippets or libraries in a variety of programming languages, but increasingly, 
consumers want access to artifacts, collections, and other ways of visually developing 
their integrations or applications, pushing the boundaries of traditional desktop, web, or 
mobile applications.

Contracts - Machine-readable contracts like OpenAPI and AsyncAPI make 
integration as simple as importing the contract for an API, authenticating, and 
making the API calls you need to move data between systems, providing an 
artifact that defines consumption.

Collections - Provide forkable and executable collections that describe 
specific parts of an API to help consumers accomplish a specific digital 
capability. Provide a buffet of capabilities for consumers to choose from for 
their API integration needs.

Automation - Take advantage of automation opportunities, allowing 
collections to be scheduled and baked into the CI/CD pipelines and common 
business capabilities to be executed. Business and technical stakeholders can 
do more with less through API automation.

Workflows - Provide ready-to-go low-code and no-code options for 
executing common business workflows, allowing multiple internal, partner, and 
public APIs to be daisy-chained into solutions that will help business and 
technical stakeholders integrate better.

Snippets - You can generate lightweight code snippets in a variety of 
programming languages. They will do most of the heavy lifting for consumers 
integrating APIs in the language of their choice, automating the more repetitive 
aspects of API integration.



Chapter 8 | The Essential Elements of API Technology 179

SDKs - You can generate complete software development kits, abstracting 
away the authentication and other complex aspects of deploying APIs. You 
always want to reduce the workload for consumers, easing integration of your 
APIs into their applications.

Today’s API integrations come in many shapes and sizes, requiring a mix of approaches 
to satisfy the needs of the widest possible consumer audience. We are moving to a 
more modular, automated, and low-code/no-code environment when it comes to 
stitching together the thousands of APIs we need to do business today.

The ways consumers integrate API resources, capabilities, and experiences into their 
applications, automations, and other types of integrations is rapidly expanding. This 
rapid expansion is raising the bar for API producers, who must reduce friction and 
lighten the integration load with proven solutions.

Test
API testing should be shared with consumers, opening up the possibilities for user 
acceptance testing. That will lead to greater trust and understanding of the reliability of 
a platform, and will strengthen the relationship between API producer and consumer. 
The results of API testing, including dashboards and visualizations, can be shared with 
consumers via workspaces and repositories, and alongside API documentation and 
portals. Go the distance–API testing plays an important role for both API producers and 
consumers.

Availability - Share uptime and availability information with consumers on a 
dashboard, providing transparency around the operation of the platform they 
will depend on for their applications and helping provide a historical 
accounting of availability.

Contract - Exposing contract tests and even the results of scheduled contract 
test runs will increase consumer awareness of API contracts and how their 
validation can be used in applications and integrations.

Performance - Share performance tests and results of scheduled 
performance test runs, increasing transparency about API performance while 
demonstrating how your platform has considered performance and is taking 
steps to improve upon it.

Security - Share your overall security policy and security test results, creating 
trust with consumers. 



180 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Usage - Explain that any type of consumer testing is not considered part of 
the usage they pay for and doesn’t show up as part of rate limits. That will 
encourage consumers to test an API and play a role in the feedback loop for 
your platform.

SLA - Provide an honest service level agreement (SLA) for each API, detailing 
expectations for services. Allow for beta, experimental, and less mature APIs, 
while demonstrating the production-ready grade of other APIs.

To strike a balance between producers and consumers, your baseline testing should 
occur via a platform, bringing consumers into the conversation about API quality and 
holding producers accountable for platform quality.

Visibility and transparency at the testing level builds trust and ensures that API producers 
are truly considering the pain of consumers. Good API producers are also API consumers. 
They have been there, and felt the friction of onboarding themselves.

Deploy
The deployment of API integrations comes in many shapes and sizes, and the notion of 
what an application is has shifted over time. Putting APIs to work used to be simply 
about web and mobile applications or system-to-system integrations. Today, 
deployment in the world of API consumers ranges from writing custom code for an 
application to low-code/no-code syncing between two separate API platforms. 

Source Control - Place all manually developed or automatically generating 
client code in a repository, providing a source of truth for the code and for any 
artifacts that are needed to define the deployment and operation of any API 
integration.

CI/CD Pipelines - Implement the continuous integration portion of CI/CD, 
automating how applications and integrations are deployed and, making the 
deployment of API integrations, applications, and other use cases something 
that is always repeatable.

Collections - Leverage a Postman collection as a modular, shareable, and 
executable definition of an application, stitching together many different API 
calls across internal and external API sources to apply digital resources and 
capabilities in a specific way.



Chapter 8 | The Essential Elements of API Technology 181

Serverless - Use serverless layers for deploying integrations, orchestrations, 
and automating API resources and capabilities, tapping into ephemeral 
compute to deploy integration code that accomplishes specific business 
outcomes.

Runners - Acknowledge that some collection applications will be manually run 
by different team members using runners, organizing different types of 
integrations and applications by workspaces and letting different stakeholders 
manually put them to work.

Monitors - Schedule the run of collection-defined integrations. Use the 
collection, combined with environments that employ a variable strategy, to 
accomplish any API-driven applications and integrations on a schedule from 
any cloud region.

Workflows - Take advantage of complex workflows to put APIs to work, 
iterating through multiple series of API calls to enable business and technical 
stakeholders to design, save, and execute the scenarios they need to 
accomplish business each day.

Webhooks - Respond to different API events using webhooks to trigger 
collection- defined integrations, applications, and workflows. Engage with 
users via different platforms while responding to their activity using modular 
API deployments.

To help today’s consumers deploy their API integrations, producers need to think 
beyond web and mobile apps. Make deployment across a spectrum of possibilities a 
simple, one-click affair, using minimal code.

Observe
API consumers need to “see” API operations and learn how their API consumption, or 
the consumption across a community, influences their own applications and 
integrations. Observability is fast defining the difference between healthy API 
ecosystems, and not-so-healthy API communities, and healthy and not-so-healthy 
organizations.

Watches - Keeping track of the watches on workspaces, APIs, and collections 
to understand who is tuned into what is happening. Use watches as a metric 
for the number of consumers, contributors, and internal and external 
stakeholders who are tuned in.



182 Part 03 | Operations Chapter 13 | Alignment and Life Cycles

Forks - Track who is forking repositories and collections, using the fork count 
as a metric for engagement and knowing who your consumers are. Track 
engagement via workspaces, repositories, and collections to learn how 
consumers are using your APIs.

Feedback - Engage with API producers and consumers, understanding the 
conversation is around each API or group of APIs. Observe discussions about 
digital resources and capabilities.

Notifications - Use in-app, email, or SMS notifications to engage with a 
platform and keep consumers part of the forward motion of an API, collecting 
metrics for observability.

Usage - Provide dashboards, reporting, and other visuals to help consumers 
understand their platform usage. These features will keep consumers 
engaged, helping them play an active part in the community and observe the 
activity that matters.

Use existing platform outputs to keep consumers informed, but also make their 
engagement more observable for producers and other consumers. That will help 
contribute to the overall health and viability of the ecosystem surrounding each API 
internally or within the external community.

API consumers need all the help they can get with observability so that they can 
regularly see and understand what is happening with their integrations. APIs are 
abstract, and it can be difficult to see individual and community use. That’s where your 
help comes in.

While API consumers care a lot more about their own API consumption, usage and 
feedback by others in the community will also play a role in how they view a platform, 
and will influence the decisions they make moving forward.

13.4 Moving Past Tribal and Vendor Dogma
While there should be a common understanding for the API life cycle across an 
organization, it is fine to have multiple entry points into the life cycle, as long as the end 
result is documented, tested and governable. In this industry, it can be too easy to insist 
on one right way of doing things–as technologists, we tend to look at things through a 
Boolean lens. But enterprise operations are much more human than that, and require a 
mix of approaches to bring alignment across teams.



Chapter 8 | The Essential Elements of API Technology 183

API design-led is often held up as the gold standard for API development and the 
definition of what the API life cycle should be. However, on the ground, this belief is 
often torn up as teams try to tackle modernizing legacy systems, iterating on different 
types of APIs with other teams who possess a mix of skills for delivering consistent 
APIs. API design-first represents an optimal state for API operations, but it doesn’t 
always reflect the skills teams possess. This reality tends to create friction as API 
design-led teams try to develop awareness and synergy across many different teams, 
resulting in pushback in the API-first transformation.

Moving to API design-led too fast can entrench existing tribal boundaries among teams, 
making it more difficult to move forward. While planning your API-first transformation, 
take inventory of the approaches teams are using to bring APIs to life and iterate upon 
them. Meeting teams where they already are is always the best place to start.mapping 
out processes and defining possible next steps may well reduce friction among teams. 
While many variations exist, there are four main processes to use to match the needs of 
teams on the ground. 

API design-led should always be your destination for teams. After getting to know 
where your teams stand, you can begin thinking about how to help them see the 
potential of being API design-led. They will not be ready for a complete shift, but can 
adopt some of the benefits introduced by this approach while still using code-led or 
proxy-first ways to generate contracts, helping define and design APIs better without 
undergoing overly stressful behavioral changes. Technological change is much easier 
than human change.Acknowledging the scope of what is needed to get teams from 
code-led to design helps quantity the work needed. That will help you understand how 
much work and time it will take to move the organization forward at scale, or at least in 
incremental steps over time.



184 Part 03 | Operations Chapter 14 | Approaches to Creating APIs

There are several different methods for creating or modifying APIs. How are they 
different, and does it really matter which one you choose? This chapter will explain the 
most important variables and show you how to use your existing infrastructure to move 
toward becoming API-first. 

14.1 Making Decisions: Lead with Design, 
Code, Prototype, or Proxy? 
Design-led: the optimal approach
Using a design-led approach means you define and design your API before you begin 
writing any code. You use an API specification to develop an API contract, mock and 
document the contract, then iterate with stakeholders upon the design of the resources 
and capability. Once you have reached agreement about what the API should do, you 
can develop tests to verify that the specifications you desired are in fact in production.

Workspace - Work on a new API always begins in a dedicated workspace. 
Make sure there is a single place where teams can find artifacts and the work 
that exists behind each API.

14
Approaches to  
Creating APIs



Chapter 8 | The Essential Elements of API Technology 185

Contract - Every API has a machine-readable contract describing the surface 
area of the API, providing an understanding between API producer and 
consumer to guide operation.

Mocks - The contract for an API is perpetually used to generate mock servers, 
helping make the API design as realistic as possible by matching specific use 
cases with examples.

Document - Documenting means generating human-readable documentation 
from an APIs contract, ensuring that it is accurate and uptodate for each API 
as it is being designed.

Feedback - Provide a feedback mechanism for all stakeholders to use with the 
current design of an API, helping guide teams to add new features, 
capabilities, and experiences.

Iterate - Aggregate feedback from consumers and other stakeholders.Identify 
sensible changes to the API, then iterate on the contract, updating mocks and 
documentation.

Test - Once the contract for an API has been established, and there will be no 
more iterations to this version, you can produce contract tests to validate that 
an API delivers upon the original intent when in production.

Develop - Hand off the API contract, providing teams what they need to bring 
an API to life in development. Move to staging and tests before it goes into 
production.

A design-led approach helps produce artifacts and gets all stakeholders and teams on 
the same page for what is needed to produce an API. It saves time by allowing teams to 
iterate upon an API without having to produce code. While design-led can get a bad 
reputation for creating more work than code-led, in reality it saves a significant amount 
of time throughout the life cycle.

Code-led: an acceptable approach
It’s common to develop a new API or add functionality to an existing one by writing 
code. A code-led approach is about producing the desired behavior by writing code in  
a local or shared development environment. Once you agree upon the API’s shape and 
behavior, you produce a machine-readable contract. This contract will then be used to 
provide a set of tests that will automate the validation of assertions stakeholders make 
throughout the development process.



186 Part 03 | Operations Chapter 14 | Approaches to Creating APIs

Workspaces - Even when an API is developed in a code-led manner, you 
should set up a dedicated workspace to provide a single place to find all work.

Annotations - Use programming language annotations to add the necessary 
metadata to the code behind an API in order to generate a machine readable 
contract.

CI/CD Pipeline - Use your CI/CD pipeline to turn annotations into machine- 
readable contracts.Translating your code into a contract allows you to power 
documentation, using the forward motion of AIIs to produce the contracts you 
will need to define them.

Contract - Produce a machine-readable contract for your API, leveraging code 
and your existing software development life cycle to create the contract 
needed to govern each API.

Document - Generate human-readable documentation from an APIs contract, 
ensuring that is accurate and up-to-date. 

Feedback - Gather feedback on the design of an API, tapping into existing 
channels to understand what consumers and other stakeholders need from it.

Iterate - Update the code base based upon feedback, adding capabilities, and 
building and updating the machine-readable contract, which then updates 
elements downstream.

Test - Produce contract tests for APIs. Add tests to your CI/CD pipeline to 
ensure that each API continues to reflect the agreed-upon contract, with no 
surprises in production.

Code annotations are the key that links a code-led approach with some of the benefits 
of design-led. API design still exists when writing code, and annotations help express 
the design as machine-readable API contracts. Using the existing software 
development life cycle to produce API contracts, you can t power documentation, 
testing, and other benefits often associated with a design-led approach. Code-led lets 
you build upon the existing skills of teams, translating their work to produce some of the 
benefits design-led champions like to showcase.

Prototype-led: very efficient
This approach to delivering APIs involves building a prototype of an API, opting to not 
build a contract first, but mocking and documenting the desired functionality using a 
collection. With a prototype-led approach, you produce as much of the functionality as 



Chapter 8 | The Essential Elements of API Technology 187

you can, iterating upon the design of the API with stakeholders before producing a 
machine-readable contract, as well as the tests you’ll need to verify that your API 
behaves as expected in production. A prototype-led approach will appeal to some 
teams as the quickest way to move from idea to development once everyone is ready.

Workspace - Whether you’re creating a new API or enhancing an existing one, 
a workspace is always the place to begin, ensuring there is a single location 
where teams can find all ongoing work.

Collection - We hand-craft a collection to describe the surface area of the API, 
defining the requests and example responses to make our API as real as 
possible.

Mocks - The contract for an API is perpetually used to generate mock servers, 
making the design of the API as realistic as possible by matching specific use 
cases with examples.

Document - Generating human-readable documentation from an APIs 
contract is important. It ensures you have accurate and up-to-date information 
about each API as it is being designed.

Feedback - Provide a feedback mechanism for all stakeholders for the current 
design of an API, helping guide producers forward.

Iterate - Aggregate feedback from consumers and other stakeholders.Identify 
sensible changes to the API, then iterate on the contract, updating mocks and 
documentation.

Test - Once the contract for an API has been established, and there will be no 
more iterations to this version, you can produce contract tests to validate in 
production, ensuring that the original intent of the API is accomplished.

Contract - Once you’ve effectively prototyped your API, iterate upon the 
design using the prototype. Then you can choose to generate a contract from 
the collection prototype, getting to the same place where you would be with a 
design-led approach.

API contracts are an essential part of API operations, but sometimes it makes sense to 
produce a contract only after you have iterated upon an API with a prototype. Not every 
team will be proficient in crafting an API contract to use for mocking. Sometimes it 
makes more sense to produce a collection, and iterate upon the API first. Then when 
they’re ready, teams can use the collection to generate a machine-readable contract 
that can be used throughout the rest of the API lifecycle.



188 Part 03 | Operations Chapter 14 | Approaches to Creating APIs

Proxy-led: managing your legacy infrastructure
Proxy-led is the process of reverse engineering of an existing API by proxying the 
requests and responses sent, or the published and subscribed messages delivered. 
That generates a collection from actual behavior within a desktop, web, mobile, or 
device application. The intent of proxy-led is to produce a collection that describes the 
surface area of an API, then mock and document this behavior before you produce a 
machine-readable contract and tests to validate behavior moving forward.

Workspace - Whether you’re creating a new AP or enhancing an existing one, 
a workspace is always the place to begin, ensuring there is a single location 
where teams can find all of the ongoing work. 

Proxy - Run the traffic for a desktop, mobile, or device application through a 
proxy to reverse engineer the traffic, mapping out the surface area of the APIs 
behind them.

APM - Pull the traffic logged in of APM solutions as evidence of API paths, 
parameters, and headers, as well as request and response bodies, or the 
messages being published as part of event-driven APIs.

Collection - We hand-craft a collection to describe the surface area of the API, 
defining the requests and example responses to make our API as real as 
possible.

Mocks - The contract for an API is perpetually used to generate mock servers, 
making the design of the API as realistic as possible by matching specific use 
cases with examples.

Document - Generating human-readable documentation from an APIs 
contract ensures you have accurate and up-to-date documentation for each 
API as it is being designed.

Test - Once the contract for an API has been established, and there will be no 
more iterations to this version, you can produce contract tests to validate in 
production, helping ensure the quality of APIs.

Contract - Once you’ve effectively prototyped your API, iterate upon the 
design using the prototype. Then you can choose to generate a contract from 
the collection prototype, taking the evidence gathered to produce the API 
contract needed over time.



Chapter 8 | The Essential Elements of API Technology 189

A proxy-led approach allows you to define the API landscape and contracts that already 
exist and automate the way you determine the “diff” between your contracts and what 
exists in production. A proxy-led approach helps your API catalogs, portals, and 
network keep pace with what is happening on the ground across operations, 
perpetually synchronizing hundreds of thousands of API contracts with the reality  
in production.

14.2 Life Cycle Essentials 
There are only minor differences in efficiency and velocity between a design-led, 
code-led, proxy-first, or prototype-led approach. The major gain in efficiency and 
velocity comes when all APIs possess contracts and up-to-date documentation, are 
fully tested, and are governable. Then you can bring them l into a common, well-known 
API life cycle, no matter how teams have begun their journey.

Life Cycle - A common, agreed upon API life cycle emerges across teams. 
They understand the various ways for entering it, and can discuss processes 
for every stage of the life cycle.

Contracts - You must have up-to-date and accurate machine-readable 
contracts available for all APIs, no matter how the API lifecycle is entered, to 
ensure that business value can be validated.

Discoverable - Every API is discoverable, including its metadata, the contracts 
defining what is possible, and the operations surrounding the API in 
production.

Productivity - Teams can move forward at their desired velocity. The 
company, while not compromising quality, keeps teams as productive as 
possible.

Quality - Contract and performance tests cover as close to 100% of the 
surface area of APIs as possible, ensuring a baseline of quality moving 
forward.

Observable - Every API and the life cycle around it is observable, providing 
you awareness and control over all aspects of the life cycle, and the way APIs 
are used.

Governance - APIs are discoverable, reliable, consistent, and delivered in a 
standardized format, no matter which team is developing them. That helps 
govern the forward motion of the enterprise.



190 Part 03 | Operations Chapter 14 | Approaches to Creating APIs

Velocity - Achieving organizational, domain, and team velocity moves the 
enterprise forward. Finding just the right speed for the moment is the key to 
taking your business where it needs to go in the coming years.

The goal of the API life cycle isn’t to restrict teams to one way of delivering APIs, but 
rather to establish a common vocabulary, allowing everyone to get on the same page 
and determine together what is important across the API life cycle.

Declaring what must always come first or saying there is a single way to deliver APIs is 
counterproductive and will undoubtedly slow down your API-first transformation. 
Ultimately, the approach isn’t the destination.Our goal is to efficiently and effectively 
deliver high- quality APIs that are discoverable, and have an up-to-date API contract 
that can be used across a well-known API life cycle.

What matters most when trying to shift your API-first transformation towards a design-
led approach is meeting your teams where they are. This is the only way you will be able 
to truly understand the state of teams’ work and determine how far you need to go to 
become API design-led.

14.3 Maximizing Your Infrastructure 
Investment
A modern API life cycle is best delivered as a layer on top of your existing software 
development lifecycle (SLDC), maximizing the infrastructure investment you have 
already made. APIs are the way you deliver more composable software.The API life 
cycle isn’t a replacement for what already exists– it is about optimizing and refocusing 
the resources your teams are already using to support your API strategy.

The best way to stitch together the API platform you will need to scale your operations 
is to augment your existing Git workflows with an API workspace and enrich your CI/CD 
pipelines with API testing, while beginning to automate management of your API 
gateways with your existing build processes. Once you have this set up, you can begin 
piping your API life cycle into your APM solution to make APIs and the operations around 
them observable with existing infrastructure. 

While you will need many other pieces of infrastructure to work seamlessly with your 
API platform, workspaces, source control, CI/CD, gateways, and APM solutions provide 
the cornerstones. These existing investments are now being retrofitted to support your 
future of efficiently delivering high-quality APIs, acting as the API factory floor for your 
digital supply chain. Your existing software development life cycle has served you well 
to this day. All you need to do to take your organization into the future is to augment it 



Chapter 8 | The Essential Elements of API Technology 191

with API workspaces and gateways. That will provide the automation, observability,  
and governance you need to scale from hundreds to thousands of APIs across  
your business. 

To pick up speed with your API-first transformation, you need to build on top of your 
existing software development lifecycle. You need to map this existing life cycle with 
the API contracts, schema, collections, and other API artifacts in your API workspaces–
syncing these artifacts with your existing source control, so that it can be used for 
testing in the CI/CD pipelines, and deploying and configuring policies at the gateway 
layer. These API contracts are what puts the API into your software development life 
cycle, providing what you need to standardize and stabilize your existing software 
development workflows.

Ultimately, it doesn’t matter whether the source of truth for your API lives in your Git 
repositories or your API workspaces.What matters is achieving alignment between your 
software development lifecycle and the iteration, documenting, testing, and deploying 
of machine-readable API contracts to meet the needs of the enterprise. You have 
already made 75% of the investment needed to pick up speed with your API-first 
transformation. All you need to do now is augment it with the remaining 25%, which will 
transform your existing software development workflows with the API contracts you 
need to do business today.



192 Part 03 | Operations Chapter 15 | Workspaces, Source Control, and CI/CD

What can you do with API workspaces? Likely, a lot more than you think. You can also 
use source control and CI/CD to hasten your API-first transformation, improving quality 
and velocity every step of the way. This chapter will show you how.

15.1 Workspaces
API workspaces are to the API lifecycle as Github repositories are to the software 
development lifecycle. A symbiotic relationship between Git repositories and 
workspaces has emerged.

Contents
APIs - One or more APIs (defined as OpenAPI, GraphQL, WSDL, Websockets, 
or gRPCs) provide a machine-readable contract that can be used to guide the 
rest of the life cycle.

Collections - Collections define documentation, workflows, mock servers, 
tests, and other automations as portable and executable units of value to be 
used across the API life cycle.

15
Workspaces, Source 
Control, and CI/CD



Chapter 8 | The Essential Elements of API Technology 193

Environments - Environments are key and corresponding value storage that is 
used to define the base URLs, secrets, and other variables you need to use 
across multiple APIs. 

Monitor - A scheduled cloud runner can execute different collections, running 
tests, automated workflows and orchestrations, and automating applications 
and integrations.

Visibility
Private - You can make workspaces accessible only internally within the 
enterprise, applying RBAC to the workspace, APIs, collections, and 
environments to maintain order.

Partner - Or you can open up workspaces to trusted external partners, sharing 
the work behind each API for collaboration to enable producing and consuming 
APIs in a shared workspace.

Public - You may decide to invite the public to view, watch, and fork APIs and 
the collections they contain, making not only the APIs, but the operations 
around them publicly available.

Engagement
Watch - Watch your workspaces, APIs, and collections, pushing notifications 
to consumers whenever there is a change to help bring producers and 
consumers closer.

Activity - Activity includes any action across the team involving configuring 
APIs, documentation, mock servers, environments, monitors, and other API 
elements.

API workspaces are the cellular makeup of your enterprise.They provide access to your 
APIs, but also give you a window into productivity, quality, and governance memory, 
making sure your enterprise moves forward at the speed you need to do business in a 
digital world.



194 Part 03 | Operations Chapter 15 | Workspaces, Source Control, and CI/CD

EXPERT PERSPECTIVE

Everything you need for an API is 
available in the workspace

Tim Velasquez

When you listen to Tim Velasquez, Software 
QA Manager at Werner Enterprises, you will 
begin to see workspaces very differently. And 
you will also see how important the role of QA 
is in an organizational shift. Tim walked me 
through the quality layers his team brings to 
each API through its workspace. He also 

explained how having the right QA processes in place will continue to 
accelerate quality and velocity as new versions are iterated.

For Tim, an API workspace isn’t just a place where you publish API contracts, 
documentation, mock servers, tests, and other essential elements of API 
operations. Theworkspace is where you find everything you need to understand 
what an API does, and how you can either iterate on the next version or put the 
API to work in an application, integration, or automation. At Werner Enterprises, 
a workspace isn’t just where you find an API, it is where you find the highest-
quality version. That’s because Tim’s QA team has done its job to guarantee that 
each API is the best possible version of that API it can be.

Picture it. Within each API workspace you will find the API contract, 
documentation, mock servers, environments, and a full suite of tests to ensure 
the highest-quality API experience. With each version of the API, you repeat 
this process, iterating upon what already exists while ensuring the API 
continues to deliver a high-quality experience. Over time you are hardening and 
maturing your API and improving the overall experience, providing one digital 
resource, capability, or experience you need to operate. What Tim’s team is 
doing is providing the nutrients you need to ensure that each API is a healthy 
cell in the overall enterprise organism. When you do this across hundreds or 
thousands of APIs, you end up with a healthy and vibrant ecosystem of cells 
across multiple domains.

Beyond delivering APIs of the highest quality, think about what Tim’s approach 
to API workspaces does for teams. Team members can go into development not 
knowing anything about an API. Then they land on the workspace, and boom–
they can readi the workspace overview, explorie documentation, run tests, and 



Chapter 8 | The Essential Elements of API Technology 195

15.2 Source Control and CI/CD
Source control
To move the organization forward along an API-first path, start by leveraging your 
existing source control for tracking and managing changes to code, and include the 
machine-readable artifacts you produce across the modern API life cycle. 

Source control is key to managing collaboration among stakeholders and consumers 
across the multiple versions of an API that might be in production at any given moment. 
Source control allows us to extend the existing software development lifecycle to 
deliver and govern each API across a well-known API life cycle.

Organizations - Establish organizations for source control that are in 
alignment with your enterprise-wide API strategy. Align domains, groups, and 
organizations to facilitate the enablement of teams delivering and operating 
APIs.

Repositories - Make sure you have a clear mono or distributed repository 
strategy for the API life cycle. That will provide a source of truth to guide r 
team decisions about how source control repositories should be used to 
support APIs.

Folders - Include in your API strategy guidance instructions about how folders 
within source control should be structured and used to consistently organize 
code and artifacts. That will give you a consistent approach for learning what 
is needed across many repositories.

use other resources to quickly get up to speed without searching or guessing. 
Everything they need is easy to discover and readily available in one 
workspace. Later, when this team iterates upon an API, everything they 
changed is added to the cellular memory of the API and its supporting 
workspace.

Workspaces are a one-stop-shop not only for teams, but for API consumers as 
well. And over time, they continue to improve team efficiency, allowing 
developers to do more and more in less time.



196 Part 03 | Operations Chapter 15 | Workspaces, Source Control, and CI/CD

Artifacts - Make sure essential machine-readable artifacts–such as OpenAPI, 
AsyncAPI, JSON Schema, and other contracts–are available across the API 
and software development lifecycle for use in documentation, testing, and 
much more.

Feedback - Leverage source control feedback loops as part of the wider API 
life cycle feedback loop. Gather feedback from stakeholders throughout the 
evolution of code and artifacts, and ensure that feedback can be gathered at 
all stages of the life cycle.

Integration - Seamlessly integrate your source control into all aspects of the 
API life cycle, using Git or APIs to make your source control central where the 
API work is happening. Do not neglect to invest in the GitOps portion of your 
API factory floor.

Automation - Put automation to work, ensuring that your evolving code and 
artifacts for producing or consuming APIs is as standardized and repeatable as 
it can be. That will allow teams to do more with less while achieving high levels 
of quality.

Git repositories can be aligned with API workspaces, but they also provide a well-known 
and seamless relationship with workspaces. This relationship between repositories and 
workspaces helps ensure that API contracts, collections, and other artifacts are present 
not just throughout the API life cycle, but in the underlying software development life 
cycle, enhancing the way your teams work.

CI/CD
Tapping into continuous integration and continuous deployment, better known as CI/
CD, will help you build, test, and automate integrations with internal and external APIs, 
and also deploy APIs that can be used for applications and integrations. CI/CD allows 
you to leverage the native pipelines of your source control–or add a commercial or open 
source CI/CD solution, seamlessly tying API production and consumption with the 
repeatability you need across teams.

Pipelines - Use CI/CD pipelines to ensure that the API lifecycle is always 
repeatable and builds the highest-quality APIs possible Your pipeline provides 
a consistent build process for the deployment of each API you deliver.

Variables - Tap into a life cycle-wide strategy for defining variables applied as 
part of the pipeline build process, ensure that the naming, use, and evolution 
of these variables occurs at the strategic level, and that they are applied 
consistently at the CI/CD level.



Chapter 8 | The Essential Elements of API Technology 197

Collections - Run contract, performance, security, and other types of 
collections as part of your pipeline using open source Newman. That way, you 
will be standardizing and validating as your APIs are built, applying a variety of 
tests, rules, and policies to improve quality.

Environments - Use standardized guidance to provide teams the development, 
staging, and production environments they need, keeping CI/CD pipelines 
alongside collections to ensure that each environment is well-defined as you 
feed the pipelines.

Observability - Tap into existing outputs for your CI/CD pipelines and for 
piping data into your API platforms, APM, and other observability and reporting 
systems. That will provide visibility for the testing that occurs as teams build 
APIs.

A modern API life cycle is built on top of existing enterprise investment through 
continuous integration and continuous deployment processes. You layeri incommon 
artifacts like OpenAPI, collections, and environments to ensure quality while maintaining 
velocity across operations.

CI/CD pipelines are the way to automate the API life cycle, using collections to execute 
contract, performance, security, and other types of tests. CI/CD pipelines are also ripe 
for automating every other stop along the API life cycle–such as publishing 
documentation to a portal, applying policies at the gateway layer, and injecting 
governance into the build process across teams.

Of course, you can test your APIs at the CI/CD layer. But what teams need to realize is 
that this same testing can be applied not only to the instance of an API, but also to the 
operations around it.



198 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

As APIs proliferate within the enterprise and around the globe, sharing them with teams, 
partners, and consumers is becoming more complex. Fortunately, an array of 
commercial and open source solutions is available to help you navigate the new 
landscape.

Innovative gateway models and cloud-native architecture provide unprecedented 
opportunities for automation, customization, and speed, while real time application 
performance monitoring lets you know whether your operations in Zambia are really 
hitting the mark. This chapter will show you some of the cool new tools you can use to 
make your APIs work better and faster, setting you up for a brighter future in a fast-
changing world. 

16.1 API Gateways
The first API gateways were offered as a component within larger API management 
platforms. As the industry evolved, a new wave of gateways was introduced to provide 
solutions for a changing landscape. Some gateway providers are now supplementing 
their standalone offerings with additional tools, often centered around a management 
approach more conducive to internal API life cycles.

16
Gateways, Performance, 
and Scaling



Chapter 8 | The Essential Elements of API Technology 199

The most common API gateway capabilities
Gateways, which have become essential to enterprise operations, offer a mix of open 
source or commercial capabilities. Here are a few of the most important:

Authentication - You need to ensure that consumers are authenticated before 
they access an API resource or capability. Authentication improves consistent 
security across all APIs behind applications, protecting the resources and 
capabilities exposed.

Authorization - Authorization controls which resources and capabilities 
consumers can access.

Contracts - You can use OpenAPI, AsyncAPI, and JSON Schema to shape the 
deployment and management of APis. The contract defines the resources and 
capabilities made available, as well as the backend system mappings using 
spec extensions.

Routing - A common capability for gateways is to route traffic to a specific 
backend service, or possibly to an external service, playing traffic cop for all 
the API requests made. Routing obfuscates the backends of APIs from 
consumers building applications.

Plans - Organizing APIs and their consumers into standardized, but sometimes 
customized access plans allows you to govern which APIs are available, 
helping align APIs to business domains and objectives and keeping the API 
catalog current. 

Policies - Machine-readable policies define the configuration and constraints 
applied to APIs and their consumers as they access digital resources via each 
gateway, providing standardized constraints across all APIs.

There are plenty of other capabilities gateways offer, but these are the leading ways 
they are used to expose valuable digital resources, capabilities, and experiences.  
These capabilities provide a baseline for quality, security, and consumer access, 
striking a balance between access and control over digital resources, capabilities,  
and experiences.

Characteristics of a modern API gateway
No more can a single vendor control access to all internal resources and capabilities. 
Today’s multi-gateway landscape possesses a range of characteristics suitable for 
different needs and outcomes, reflecting the ever-expanding demands consumers are 
placing on internal and external APIs. 



200 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

Centralized - Many enterprises have a single centralized gateway handling all 
traffic coming from outside the enterprise via a single entry point. That 
provides an industrial-grade way of handling traffic coming in and out of the 
enterprise.

Federated - It is increasingly common for enterprises to support a federated 
gateway approach for making APIs available across domains, acquisitions, and 
lines of business, and helping to manage traffic in and out of the sprawling 
enterprise landscape.

Regional - The deployment of regionally specific gateways has emerged to 
respond to increased regulation and data sovereignty rules in many regions. 
Regional gateways also bring resources and capabilities closer to the 
consumer.

Vendors - It is common for enterprise organizations to have API gateways 
from multiple vendors, providing a mix of gateway solutions teams can use 
when securing APIs or managing the access to digital resources and 
capabilities within a specific cloud.

Cloud - Many enterprises now use multiple clouds, leading teams to runcloud-
specific gateways. That means teams need to learn specific approaches for 
publishing cloud- native APIs.

Open - Open-licensed gateways, as well as openly licensed contracts, 
policies, and other artifacts, are increasingly common in enterprises, providing 
a low-cost and interoperable approach to managing gateway APIs.

The gateway landscape today is farmore modular, distributed, and standards-driven 
than it was just a decade ago. API gateway offerings continue to evolve to meet an 
increasingly diverse landscape of protocols, patterns, and network considerations.

These API gateway characteristics aren’t just exposing APIs, they are helping us ensure 
that our APIs are available where and how consumers need them. These elements 
reflect the needs of the modern enterprise for delivering the digital resources, 
capabilities, and experiences they need to move at the pace of today’s global 
operations. Today’s API gateway has shape-shifted to reflect what teams need for 
navigating a sprawling enterprise landscape.



Chapter 8 | The Essential Elements of API Technology 201

EXPERT PERSPECTIVE

Federating the API gateway landscape
API gateways have become a commodity today, 
with a wealth of open source and commercial 
providers offering solutions. When you study 
the API gateway provider landscape, you begin 
to understand why Dekel Tankel, Global Field 
CTO for Tanzu at VMware, says that federated 
API gateways are the future. The advent of 

microservices has given t enterprise developers greater power, and teams are 
looking for autonomy and agency. A federated approach can deliver it, while 
also helping organizations scale.

With the power shift, developers have asserted more control over the gateways 
they depend on for delivering critical microservices. While many organizations 
continue to use a single centralized gateway owned by traditional IT groups, 
there is often a federated landscape of micro, regional, and other gateway 
incarnations. This gateway sprawl employs a mix of open source and 
commercial solutions, rendering the future of APIs a multi-gateway affair. 
Teams nowadays don’t need all the capabilities that came with the central API 
gateway IT installed. Instead, they have chosen much smaller, lighter-weight 
API gateways. 

With its Tanzu gateway offering, VMWare doubled down on a federated API 
gateway approach, leveraging API contracts to power the gateway and 
encouraging a federated approach to gateway policy management. VMWare’s 
offering spoke to the needs of technology leaders by providing a contract- and 
policy-driven approach that could be centrally defined. But the company didn’t 
turn a deaf ear to developers, creating a microgateway approach to meet their 
needs, while enabling them to also take advantage of centralized contracts, 
patterns, and policies. This API gateway pattern resulted in part from the last 20 
years of gateway evolution, but it also reflects the new enterprise landscape. 

A federated API gateway approach delivers a successful formula for API 
governance, providing centralized governance that also translates to 
enablement of capabilities on the ground floor. This type of architecture 
embraces the sprawling reality of enterprises, while still allowing them to 
centralize policies and practices, standardizing the delivery of APIs across 
many domains, teams, and geographic regions. 

Dekel Tankel



202 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

16.2 Application Performance Management
(APM)
As part of the API-first transformation, organizations look to existing APM solutions to 
monitor and manage the performance of APIs and the infrastructure and operations 
around them. All outputs from every stage of a well-defined API life cycle – and the 
software development lifecycle beneath it–are fed into existing APM solutions. This 
approach leaves no part of API operations untapped when it comes to detecting and 
diagnosing the performance and quality of API operations.

Collections - Postman collections are the modular, shareable, and executable 
way of defining the outputs across API operations. Collections make any 
platform more observable, allowing any aspect of API operations to be 
measured and evaluated.

Environments - Machine-readable environments define the common elements 
of API environments, including URLs, tokens, keys, and other variables that 
can be applied in a variety of settings, providing an efficient way to make APIs 
more observable.

Operations - You can define collections for the operations behind APIs, 
making source control, CI/CD, gateways, and other stops along the API life 
cycle observable. You can use collections to define the output, and a monitor 
to publish into the APM solution.

Coverage - You can standardize the coverage of tests for contract, 
performance, security, operations, and governance by using collections and 
scheduling with monitors. That provides you as close to 100% coverage across 
APIs as possible, ensuring that every part of operations is observable.

VMware’s progressive approach to API delivery meets developers where they 
are, providing them agency and autonomy while still holding them accountable 
for adhering to centralized policies, governance,and industry regulations. In 
other words, a federated API gateway landscape helps organizations balance 
technology requirements with their business needs and their developers’ 
demands for agility as they roll out APIs at scale.



Chapter 8 | The Essential Elements of API Technology 203

Monitors - Monitors are cloud collection runners that can be scheduled and 
run in different cloud environments. A variety of configurations is possible, 
allowing you to automatically monitor any aspect of API operations.

Results - The results from collection runs against different environments can 
be routed into common APM solutions, making the health data of APIs and 
operations available for further processing. Data can also be included in 
observability dashboards.

Dashboards - APM solutions make not only individual APIs, but the 
infrastructure around them more observable.That means you can view source 
control, CI/CD, and gateways in ways that make more sense to your business.

Your APM solution is the observability window across your APIs and your operations. 
Every output from your API operations should route into your APM to provide you with a 
dashboard view of all the technical details surrounding your APM management. It also 
supplies your product managers and leaders with the view they need. Your APM is key 
to understanding the state of your enterprise. Use it to build the awareness you will 
need.

16.3 Embracing the Benefits of 
Cloud-Native
The cloud was the third evolutionary shift in the API universe–right after commerce,  
and social. The cloud has been available via APIs since its inception, so it makes sense 
that there is a symbiotic relationship between being API-first and being cloud-native. 
The cloud enables APIs, and APIs enable the cloud. Using the cloud is an essential  
part of the API life cycle, API governance, and the management of API operations at a 
global scale.

The cloud provides many benefits, and there are also many paradigm shifts that come 
when delivering APIs in the cloud. Here are a few of the key elements of cloud-native 
that you should be thinking about as you invest in your API-first transformation:

Elasticity - Cloud platforms can scale much more easily than traditional data 
centers, leveraging virtualization and automation to meet the demand of 
consumers and allowing all types of infrastructure to be elastic and flexible.

Concurrency - APIs can be scaled out horizontally across multiple identical 
processes, as opposed to vertically, scaling-up a single large instance. That 
provides a more balanced approach for delivering elasticity across your services.



204 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

Configurations - The standing up and configuration of APIs can be done via 
APIs, allowing for more automation and repeatability. It’s all part of the 
elasticity, concurrency, and availability of API services and products, which 
can always be configured.

Disposability - In the cloud, all API infrastructure is disposable. You can stand 
it up and reconfigure as needed, ensuring that teams can confidently dispose 
of one or many instances of an API, then quickly return to the desired state if 
they choose.

Logging - The capacity for logging API activity is greater in the cloud. Every 
event and activity that occurs can be logged, making the collection, 
aggregation, archiving, and observability of API logging a default part of API 
operations across teams.

Administrative - All the administrative tasks you need to operate APIs are 
available via APIs. That gives you another class of APIs you can use to manage, 
automate, and orchestrate APIs, ensuring that your API operations are always 
moving forward.

Costs - Defining, calculating, and managing the costs associated with API 
infrastructure in the clouds is much simpler and can easily be automated. You 
can use cloud billing APIs to obtain a tighter grip on what you spend to operate 
your APIs.

Regions - A cloud-native approach allows you to deploy APIs in geographic 
regions around the world, increasing the reach and performance of your APIs 
and significantly hastening your API-first transformation.

The cloud provides the elasticity, concurrency, configurability, and disposability you 
need to efficiently deliver and iterate upon the thousands of APIs you will need to do 
business in coming years. While there will always be situations where on-premises 
makes sense, moving to the cloud enables you to meet the needs of the future while 
simultaneously managing your legacy.

Deploying new infrastructure is not a one-and-done deal. You will need to stand up, tear 
down, and perpetually iterate and evolve your infrastructure. The place where you will 
do that is the cloud.



Chapter 8 | The Essential Elements of API Technology 205

EXPERT PERSPECTIVE 

Standing up and tearing down 
operations for each race

One of the benefits of operating in the cloud is 
that things are much more elastic, allowing you 
to stand up and tear down the infrastructure 
behind your APIs as needed. There are many 
business situations where this elasticity comes 
in very handy, but few compare with the 
situation Formula One faced. Ryan Kirk, Lead 

Cloud Architect and Team Manager at Formula One, shared the company’s 
experience with me, showing how embracing the cloud radically changed the 
way the company does business. 

For 15 years, Formula One shipped a data center around the world–stood it up, 
and tore it down for every race. Then they’d ship it to where it was needed next. 
When the company began exploring the cloud, executives initially had an “If it 
isn’t broken, then don’t fix it” attitude. But once they started playing around with 
the cloud they began to see the benefits of its elasticity and flexibility. The 
cloud provided a whole new way to support races, without continually standing 
up and tearing down the data center. 

Another key ingredient in Formula One’s cloud journey was the adoption of a 
DevOps culture. It was clear that the cloud provided new opportunities for 
automation and deployment of infrastructure, using repeatable CI/CD 
workflows across teams. Their teams wanted to automate repetitive tasks to 
become more productive. The cloud would also reduce friction as the company 
evolved DevOps to include DevSecOps–embedding security controls earlier in 
the software development cycle.The Formula One team was looking to abstract 
away procedures like changing out the API keys used in the CI/CD pipeline as 
part of deployment. These are things that developers don’t care about, and 
with the cloud, they can easily be defined and automated.

The cloud changed how Formula One defined its virtual data center for races, 
making infrastructure, services, and self-service available so that teams could 
stand up and tear down what they needed, as needed. Teams began treating 
their infrastructure as code. That allowed them to achieve the scalability, 
redundancy, and geographic distributions the company needed. 

Ryan Kirk



206 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

16.4 Deploying APIs Across Regions
Enterprises are increasingly deploying APIs across multiple geographic regions to move 
digital resources and capabilities closer to customers and comply with regulatory and 
data sovereignty requirements. As physical borders evolve to become digital borders, 
organizations have many new considerations as they expand their operations.

Deployment - API producers are increasingly deploying their APIs into multiple 
regions, and must ensure that gateways to backend systems meet customer 
and regulatory needs in specific geographies.

Availability - Some enterprises are only offering a portion of their digital 
resources, capabilities, and experiences to specific regions. They are 
designing and delivering APIs based upon what different regions need.

Operations - Organizations are zooming out from individual APIs and thinking 
about their overall operational needs. That could mean full deployment of APIs, 
or making only part of the catalog available to specific regions, depending on 
the broader scope of business needs.

Revenue - Invest in the research to understand the revenue opportunities you 
would gain by delivering APIs to a specific region. Work to understand the needs 
of target consumers, then provide an initial set of APIs to meet their needs.

Governance - It is important to build into your governance strategy some 
consideration of regional needs; that is, the f rules, policies, and other 
standardization you will need to support each individual region.

Legal - Make sure you understand the legal requirements of operating in a 
specific region. Examine local laws, regulations, and the legal details of 
engaging with consumers.

Formula One teams can now provide the privacy and security required to 
support their high-profile events, while achieving the “speed” they need for 
standing up and supporting the capabilities they need to manage each race. 
Teams have more confidence in delivering infrastructure,, while automating as 
much as possible, gaining more time for innovation and optimization. Repeating 
these successful processes gives Formula One a digital muscle memory that 
makes the company faster, more agile, and more responsive–always ready for 
the twists and turns that lie ahead.



Chapter 8 | The Essential Elements of API Technology 207

Health - Dashboards will help you understand the regional health of your APIs, 
while also observing health across the enterprise.

Support - Before expanding to new regions, make sure you can support those 
operations. That means, providing multilingual and localized content, 
documentation, and any other resources your consumers will need for 
success.

The World Wide Web is global, but in recent years network and data sovereignty 
concerns and nationalism have introduced more regulation that enterprises must 
consider when delivering APIs in specific regions. While regulation is a top concern, the 
main driver for regional expansion is pushing resources, capabilities, and experiences 
closer to consumers to better meet their needs.

EXPERT PERSPECTIVE

Moving the gateway to the edge  
at Cloudflare

If you want to understand where API 
operations are headed in the next decade, I 
recommend tuning into what Cloudflare is up 
to–not just with their DNS offerings, but with 
their new API gateway solution. I recently sat 
down with Patrick Donahue, Vice President for 
Product at Cloudflare to discuss the 

company’s strategy for the newly-released gateway. Cloudflare’s approach, in 
contrast to that of incumbent API management and gateway providers, reveals 
where the world of APIs is headed in coming years.

Cloudflare has been pushing the DNS conversation forward for the last decade, 
but it has also invested in serverless. Now, the company is investing in an API 
gateway that is poised to shift the conversation about how we produce and 
consume APIs. Cloudflare operates in almost 300 cities in over a hundred 
countries, strengthening their DNS offerings, but also allowing them to push 
serverless computers to the edge. This investment has laid the foundation for 
their API gateway offering, which will push APIs to the edge across all of these 
regions, radically reshaping the API landscape and enterprise operations 
around the globe. 

Patrick Donahue



208 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

16.5 Change Management
The API landscape is always changing. When you are API-first, this is a good thing. You 
have control over the rate of change and can effectively communicate changes to your 
consumers. Being API-first allows you to leverage change to your advantage, iterating 
upon your APIs as needed, not just to keep up with the pace of change, but to move it 
forward yourself.

Life Cycle - Without having a clear definition of the API life cycle, and without 
being able to discuss it with your teams using a shared vocabulary, change will 
become exponentially more difficult for you.

Source of Truth - You must always have a designated source of truth where 
code and artifacts are stored, evolved, synced, and forked, and where they are 
used across teams and contributors. Everyone must be working for the same 
truth.

During our conversation, the Cloudflare API gateway was still in beta. The 
company was tapping into feedback from a handful of its most trusted 
customers, trying to determine their needs in terms of performance, regulatory 
compliance, and other factors. Imagine having a product feedback loop with 
customers who operate across the globe to learn what they need at the 
gateway layer. Cloudflare can now iterate and evolve the gateway to meet the 
needs of customers at scale everywhere,, essentially putting its finger on the 
pulse of the API economy as it evolves.

Cloudflare’s unique view of the API landscape will translate into a better API 
gateway and will help the company develop better awareness of what is 
needed at the front lines. The company will also extend this awareness to 
customers through public API landscape reports. 

It is safe to say that APIs–and more specifically, API gateways–have been 
commoditized since 2015. But what Cloudflare is doing bakes APIs and API 
gateways into the fabric of the web, changing its nature. While a significant 
portion of the web will continue to be allocated for human beings, increasing 
portions of it are being dedicated to web, mobile, device, and network 
applications and system-to-system communications. That will help all of us , 
automate more and extend our enterprise operations to a truly web scale.



Chapter 8 | The Essential Elements of API Technology 209

Contract-Driven - Open source specifications like OpenAPI, AsyncAPI, JSON 
Schema, GraphQL, Protocol Buffers, and WSDL are used to govern the 
production and consumption of APIs, ensuring there are machine- and human-
readable contracts in place.

Versioning - You need to apply a semantic, date-based, or other versioning 
strategy to API contracts and artifacts, helping communicate change as APIs 
are being produced to keep consumers up to speed.

Source Control - Use existing source control to manage change across API 
operations, making sure artifacts are available to show you what change looks 
like. That will minimize breaking changes, while keeping API contracts in 
alignment with deployments.

Releases - Provide organized and communicated releases for APIs, pausing 
for a moment to identify, consider, and discuss changes. Provide a clear 
milestone that can be shared between producers and consumers of each API.

Provenance - Without a record of the past, it is very difficult to know where 
you are going. That makes architectural decision records, change logs, and 
other provenance solutions a critical part of optimizing API velocity.

Automation - Contracts, versioning, and API release should always be as 
automated as possible. Use existing source control and CI/CD, but also be sure 
to leverage monitors for scheduling and orchestrating the way change is 
managed across all APIs.

Change is inevitable. APIs allow you to standardize and communicate change as it 
happens, helping API producers and consumers stay in alignment. As a result, 
consumers are more likely to keep pace with each version of APIs they are using.

Without a well-defined API life cycle, machine-readable API contracts, and a repeatable 
and automatable release process, seeing and managing change will be much more 
difficult. 



210 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

EXPERT PERSPECTIVE 

Communicating and incentivizing 
change at Stripe

Without a doubt, managing change for your 
API-producing teams can be difficult. But 
shepherding your consumers through change 
is exponentially tougher. To learn how a 
leading API provider does it, I talked with Chris 
Traganos, Developer Advocacy Engineering 
Managerat Stripe. As you’d expect, Chris has a 

front row seat for understanding change in the payments industry. Stripe is very 
vocal and deliberate about its versioning strategy. When you first integrate with 
its API, you are basically “pinned” to that version until you deliberately request a 
new one. Stripe is very consumer-friendly–it doesn’t force users to move 
forward with each version. It continues to support all of its versions and makes 
sure each new release is backwards compatible. It also communicates changes 
to consumers and shares its change management strategy. This approach 
reduces friction and has become extremely successful, but it does create a 
challenge: How do you incentivize API consumers to upgrade to a new version, 
where you know they could benefit from new capabilities if they’d just try it. 

The problem is, API consumers won’t always budge, even when you dangle new 
and exciting features in front of them. Why? Because they worry about the cost 
and time of changing their integrations. To deal with this reality, Stripe is 
investing heavily in open source client SDKs and other integration solutions. 
That will help consumers easily upgrade with each release without breaking 
their applications. It will also allow new consumers to quickly integrate Stripe’s 
APIs in the languages of their choice.

By combining its easygoing approach to versioning with an investment in open 
source technology, Stripe will make keeping up with its latest innovations a 
frictionless experience for consumers. This company truly understands that 
your progress as an API producer is directly related to the progress of your API 
consumers. And investment in change management via APIs will help you 
increase your velocity.

Chris Traganos



Chapter 8 | The Essential Elements of API Technology 211

16.6 API Portals
Internal, partner, and public API portals are now common across the enterprise 
landscape, having been introduced as part of an earlier SOA investment, or more 
recently, as part of an API management investment. Portals play a critical role in 
onboarding and engaging with users. But like other parts of the API life cycle, they  
are evolving, and often struggling to keep up with the changes happening across  
API operations. 

Internal - Internal API portals exist as part of legacy investment in API 
management solutions. They often needmore work and engagement to ensure 
they are keeping pace with the rate of change.

External - Publicly available API portals are becoming a common fixture of 
enterprise public websites. They provide a public doorway to digital resources 
and capabilities available for use in business operations.

Networks - Networks provide an opportunity to connect your private, partner, 
and public APIs to a larger network of developers. That will help automate 
discovery not only of APIs, but of the mock servers, tests, and other aspects 
of API operations.

Documentation - Human-readable API documentation has become a staple of 
portals, providing HTML views of what is possible with APIs. Documentation 
describes how to use them, providing examples that demonstrate potential 
and speak to developers.

Onboarding - Portals are the doorway to API consumption. They show 
consumers what is possible and how to get started putting APIs to work as 
part of applications and integrations.

Community - One way to breathe more life into your API ecosystem is to build, 
attract, and cultivate community within your own API portal. You can also link g 
to other networks to engage with developers in the communities they 
frequent.

Support - Providing support to API consumers offers a rich opportunity for 
building trust and ensuring they successfully put your APIs to use.



212 Part 03 | Operations Chapter 16 | Gateways, Performance, and Scaling

Discovery - A well-maintained portal provides a rich opportunity for helping 
producers and consumers discover new APIs when they want to develop new 
APIs of their own, plan new applications and integrations, or put resources to 
work.

Experience - Portals aren’t just about providing documentation and support. 
They are about delivering meaningful and enjoyable experiences for 
consumers and making digital resources and capabilities more accessible for 
developers.

Portals are an established aspect of API operations, and are making incremental shifts 
to keep up with the pace of change across operations. These shifts are helping to 
deliver the experiences today’s consumers expect,, reducing their time to first call and 
making sure they always have access to the latest and greatest experiences.



213Chapter 17 | Roles, Discoverability, and Analytics

As APIs become more embedded in enterprise operations, their use is extending far 
beyond the IT department. Executives, product managers, marketers, operations and 
security specialists–heck, even lawyers–all have a stake in determining how APIs are 
designed and what they can do. And of course, so do your consumers.

But all these users are powerless unless you give them behind-the-scenes visibility into 
your APIs and the operations surrounding them. Without visibility, you’re also missing 
out on valuable feedback. This chapter delves into the nitty-gritty about what 
observability really means and why it’s so important, offering you tips at every turn to 
make your APIs more powerful by making them more discoverable.

17.1 Roles
A growing number of job roles have become involved in API operations, from defining 
their capabilities to distributing them and iterating upon the design to bring them into 
alignment with consumer needs and business objectives. For companies further along 

17
Roles, Discoverability, 
and Analytics



214 Part 03 | Operations

in their API journey, APIs are no longer just an IT-led effort, but one that requires a mix 
of skills and cross-cutting roles to move APIs forward in a productive, reliable, and 
consistent manner.

Product Manager - APIs are increasingly being treated as products. Project 
managers keep the road map for APIs in alignment with consumer needs and 
the goals of business stakeholders, including those in sales and marketing.

Software Architect - Organizations are leaning on software architects to 
define the technical details of defining and designing APIs. They help establish 
common contracts for schema r that API developers can use. 

Developer - Specialized backend developers focus on designing, developing, 
and delivering consistent and intuitive microservices and APIs that meet the 
needs of consumers and align with wider business objectives.

Test Engineer - The development of contract, performance, and other types 
of tests required to deliver high-quality, reliable APIs is increasingly 
implemented by test engineers. They are often part of a skills QA team that 
understands API nuances.

Information Security - The information security role goes beyond application 
security and other security teams.These people understand the specialized 
needs for securing APIs, whether they are applied as private, partner, or public 
applications and integrations.

Release Management - It’s important to centralize the release of APIs, 
ensuring that they are deployed in a repeatable and consistent way and 
helping load-balance the journey from development to production across 
developer teams.

Operations - Once APIs are in production, SREs, DevOps, and other 
operations roles are stepping in to ensure they are observable and that the life 
cycles surrounding them are also observable across all relevant roles. 

Product Marketing - After APIs are ready for consumption, product marketers 
step in to drive distribution. They make sure that APIs are discoverable and 
that consumers engage with each version.



215Chapter 17 | Roles, Discoverability, and Analytics

While some of these roles may already be familiar to your team, it’s essential to 
understand where they fit in the API life cycle and how they work in concert to 
consistently and reliably deliver new APIs and iterate upon them. You should maproles 
for each stop along the API life cycle, then educate stakeholders about the mix of 
responsibilities. That will help you establish clear ownership across teams, reducing 
friction at every stage of the life cycle.

EXPERT PERSPECTIVE

API literacy for lawyers at North 
Carolina Central University

As APIs become ubiquitous behind the 
desktop, web, mobile, and device applications 
we depend on in our businesses, employees 
are gaining more exposure to them. That 
includes lawyers, as I learned in speaking  
with April Dawson, Associate Dean of 
Technology and Innovation and Professor  

of Law at North Carolina Central University (NCCU).

Through its Technology Law and Policy Center, the university is working to 
equip the next generation of lawyers to understand APIs and use them in their 
work. This isn’t just about teaching APIs to the lawyers who will be working at 
the intersection of law and technology–it’s about equipping every lawyer with 
an awareness of APIs. I have seen universities invest in an API curriculum for 
computer science students, but focusing on a specific sector of our society and 
giving all students a base-level understanding of APIs? That was new to me, 
and it definitely speaks to the wider API-first transformation happening across 
many business sectors.

Having an awareness of APIs will help lawyers more effectively access court-
related information through legal APIs, such as UniCourt and the Free Law 
Project, but the ramifications go beyond that. Law graduates are increasingly 
working on municipal, county, state, and federal policies that regulate or 
influence how all of us use technology. In effect, that means April and NCCU are 
working to produce the next generation of technology policy makers. By better 
understanding APIs, these lawyers can help the country create more robust 
laws that can be applied in ways that are feasible and make sense. 

April Dawson



216 Part 03 | Operations

17.2 Making Your Operations Discoverable
An API-first landscape is discoverable by default. API operations are known because 
APIs, their artifacts, and the operations around them can be viewed in workspaces and 
repositories that are kept in sync. Discoverability is about providing an ongoing 
snapshot of the state of API operations that is always indexed and searchable via 
private, partner, and public networks and the workspaces where API development 
occurs. 

A discoverable state
APIs are very digital and abstract, making them difficult to “see.” Providing 
discoverability of APIs and the operations around them help prevent the APIs from 
operating in the shadows of applications.

Latest - Show the latest goings-n across operations, helping to surface 
interesting and relevant APIs and ongoing API work across domains and 
teams.

Activity - Show the configurations and changes are made across API 
operations, revealing what team members are doing in real time across 
workspaces.

Search - Provide a universal search for internal and external APIs that people 
can use to build applications, use in integrations, and develop automations. 

Browse - Make API operations browsable by, workspace and other metadata, 
helping teams explore operations.

What is happening at NCCU is just one example of how APIs are entering the 
mainstream. Most leading universities have some sort of API-related curriculum 
for technology students, but it could also help others succeed in their careers. 
The growth of low code/no code applications and other methods that do not 
require programming experience allow non-specialists to integrate, orchestrate, 
and automate APIs that can help guide their work and increase productivity. As a 
result, I expect to see rapid expansion of API education programs in the future. 



217Chapter 17 | Roles, Discoverability, and Analytics

Notifications - Push notifications to team members and consumers, sending 
them useful information via native, email, and other channels.

Suggested - Provide suggestions for teams and consumers for relevant APIs, 
automations, and other resources and capabilities that might meet their needs.

Feedback - Allow stakeholders to provide feedback about API operations and 
how they are used in applications. That will give your teams ideas for possible 
enhancements. 

API discovery must keep up with the pace of business, which means that everything 
must be indexed natively as part of the underlying API platform.

While each API has its own API discovery considerations, this blueprint is about 
discoverability across all your APIs It’s important to make discovery a default state that 
doesn’t require additional work by teams and is able to keep pace with change as it 
occurs.Expanding on which elements are discoverable

Making API operations more discoverable is the top challenge enterprises face today. 
Too many make API documentation the only discoverable element. For any kind of 
API–private, partner, or public–teams, tests, and essential building blocks of APIs 
operations should be discoverable by default. The elements below represent the points 
of collaboration that matter most to API-first transformation.

Domains - Make sure domains are discoverable, allowing business and 
technical leadership to find everything they need for single or multiple 
domains.

Teams - Ensure that the teams behind APIs are discoverable, allowing 
consumers and other stakeholders to see the humans behind the operation 
and support for each API.

APIs - API discovery means making available all the artifacts that define each 
API, allowing those with access to search for contracts and other machine-
readable definitions. 

Documentation - Requireall APIs to have up-to-date documentation that is 
indexed and has visibility matching the needs of targeted private or public API 
consumers.



218 Part 03 | Operations

Mock Servers - Provide a sandbox and specific business use case mock 
servers for your APIs, making it easy for users to onboard without having to 
authenticate or sign up.

Tests - Reliable APIs provide access to tests, including contract, performance, 
security, governance, and other types you run against an API, providing 
transparency and building trust.

Environments - Publish machine-readable environments for the development, 
sandbox, staging, and production phases, keeping configuration variables 
discoverable.

Monitors - Provide access to the monitors that are testing, automating, and 
orchestrating with APIs, helping to show how API operations works and 
making processes more transparent.

This indexing of API operations becomes the institutional memory of the enterprise, 
providing an ongoing map of operations. Digital indexes possess everything you need 
to demonstrate the value an enterprise produces each day. They represent the digital 
resources and capabilities an enterprise has at its disposal.

API discovery isn’t just about helping consumers find the APIs they need It is about 
ensuring that your API operations are discoverable. It isn’t enough to provide API 
documentation through your developer portal.You need to ensure that all APIs and their 
documentation, mock servers, tests, environments, and every other aspect of your 
operations can be found.

17.3 Analytics and Reporting
An API-first landscape needs to be transformed into a visible landscape, taking every 
output available across all APIs, the infrastructure behind them, and the governance 
overlaid on top of them and including it as part of the overall feedback loop within each 
domain. This work is about testing each instance of an API, its surface area, and the 
infrastructure used to deliver it, using collections as the universal observability 
connector that allows you to see across API operations.

Domains - Provide observability into the domain, rolling up teamwork, 
workspaces, APIs, and every other element of operations into simple 
dashboards and reporting. That will help business and technology leaders 
understand the state of API operations domain by domain.



219Chapter 17 | Roles, Discoverability, and Analytics

Teams - Offer insight into how teams are working and performing, considering 
the technical and the human aspects of API operations. Then you can 
understand which teams are effective and which need more assistance across 
the API life cycle.

APIs - Make testing, security, governance, and consumption of APIs 
observable using dashboards and reporting solutions, allowing observation of 
individual APIs, as well as observation at scale of other dimensions important 
to business.

Life Cycle - Provide observability for the define, design, develop, testing, 
secure, deploy, and observe stages of the API life cycle, helping teams and 
leaders observe the digital API factory floor and understand the state of 
operations.

Security - Provide observability into the security across APIs, making efforts 
to shift security left in the API life cycle. This will also allow teams to see the 
scanning, authentication, encryption, and other aspects of securing API 
operations. 

Governance - Automate the observability of governance, helping quantify 
how discoverable, reliable, and consistent APIs are across teams. You will also 
be able to observe how well your teams understand (or don’t understand) the 
API life cycle and how it aligns with governance.

You can’t control the direction of the enterprise unless you observe the state of 
operations at scale. APIs give you the opportunity to define the value generated across 
the enterprise each day and see what is needed to move in the right direction.

Your API platform should possess native reporting that helps you effectively “see” your 
API operations. However, you should also use your existing APM solution to provide the 
analytics and reporting you need to understand the state of your enterprise operations. 
Beyond your native and APM analytics and reporting, push your API life cycle vendors to 
provide you with the reporting capabilities you will need to understand each stop along 
your API life cycle. Better yet, push them to have APIs, so you can pipe results into your 
APM using collections.



220 Part 03 | Operations Chapter 18 | Improving Productivity, Quality, and Security

To ensure that your APIs are consistently high-quality and secure, you need to have the 
right tools and use them the right way. If you do that, you will also make your teams far 
more productive. This chapter will show you how.

18.1 Productivity
How do you achieve productivity in an API-first world? Through well-defined 
workspaces that possess everything you need to engage with an API throughout its 
well-defined life cycle. An API-first approach organizes the enterprise API factory floor 
into workspace beehives that contain the artifacts, documentation, mock servers, 
environments, monitors, and other building blocks teams will need to move the 
enterprise forward.

Workspaces - Everything you need to engage with APIs should be available 
via collaborative workspaces. The workspaces must contain e access controls 
to prevent undesired outcomes while ensuring that your APIs are discoverable, 
and so is everything else needed to sustain and evolve APIs, allowing for 
turnover of teams without any disruption to work. 

18
Improving Productivity, 
Quality, and Security



Chapter 8 | The Essential Elements of API Technology 221

Collections - The collection is a machine-readable, executable, and 
documented unit of work, providing everything you need to define a unit of 
business value in an API-first world. That includes definitions, documentation, 
mock servers, testing, and the automation you need to validate, scale, and 
empower your teams to do more with less.

Life Cycle - You must have a known life cycle that allows all contributors to 
deliver the best possible APIs in a short amount of time. That means 
standardizing how APIs are delivered to optimize productivity, and making 
sure developers have the education and training they need for navigating the 
life cycle, as well as getting teams on the same page across enterprise 
domains.

Documentation - Everything across the life cycle must be documented. That 
includes not just the reference documentation for your APIs, but onboarding 
docs, workflow docs, and your mocks, tests, and other automation. 
Documentation turns workspaces into institutional memory across the 
enterprise.

Discovery - All API operations must be discoverable, making teams, APIs, and 
operations available via search and discovery and ready for use across any 
stage of the API life cycle. Allow teams to find what they need when they need 
it, helping make API operations not only more discoverable but also capable of 
self-service, increasing team productivity.

Teams aren’t productive in a chaotic environment where they can’t find what they need, 
there is no common vocabulary for how things work, and they constantly lack 
documentation. Workspaces help ground the life cycle, and collections provide the 
atomic units of enterprise memory over time, helping teams move forward as they 
iterate products and increase the value your organization produces. Why do API 
operations tend to be so chaotic?

It’s mainly because APIs and the operations surrounding them are often very abstract 
and technical. The more we can do to make API operations visible, discoverable, and 
well documented thin workspaces, the less chaotic things will be. 



222 Part 03 | Operations Chapter 18 | Improving Productivity, Quality, and Security

EXPERT PERSPECTIVE

Boy Scouts of America does more 
with less by being API-first

When I saw the brainstorming session for a 
proposed episode of Breaking Changes with the 
Boy Scouts of America (BSA), I expected a 
simple story about how APIs power mobile 
applications at the non-profit organization. I was 
pleasantly surprised to learn that the BSA is 
actually API-first in everything they do. They 

depend on their ongoing API-first transformation to do more with fewer 
resources, while providing the best possible experience for membership and 
partners.

Vijay Challa, former CIO of the BSA, explained the importance of domain-driven 
design principles, which the organization applies to all of its API resources. 
Domain-driven design means they’ve put a lot of thought and planning into their 
schema and vocabulary for things like scouts, events, badging, and the other 
moving parts of what we all know as the Boy Scouts. Vijay’s team understood 
that doing the upfront work around the design of domains would pay off during 
the design phase and other stages of their API life cycle, saving them time and 
money down the road.

The BSA employs an API contract-driven approach to defining, designing, and 
then delivering their APIs. They recognize the efficiencies they gain using a 
contract-driven approach, and how it helps with documentation, mocking, 
testing, security, and other stages of the API life cycle. API contracts allow the 
BSA to deliver more reliable and secure APIs across their internal and external 
applications. Their thorough understanding of APIs and the importance of a 
contract-driven approach has helped them with their ongoingAPI-first 
transformation, maintaining momentum with smaller teams and fewer 
resources. Teams are all on the same page, working as a collective group to 
move the organization forward.

Security and privacy are top priorities for the BSA. Because they have done 
such a good job of defining their API resources and capabilities, they are able to 
strike a balance between providing access and achieving the control they 
desire. Vijay described the organization’s sophisticated role-based access 

Vijay Challa



Chapter 8 | The Essential Elements of API Technology 223

18.2 Improving API Quality
Achieving high API quality across enterprise operations requires individual sets of 
standardized tests that are applied across every digital resource and capability. 
Collection-driven testing allows for any type of test to be defined in a modular, 
shareable, and executable manner. API-first is about investing in a self-contained and 
documented set of tests for contracts, performance, integration, and any other variable 
you can imagine that can be used to automate quality assurance across operations.

Testing - Contract and performance testing should be present across as close 
to 100% of the organization as possible, but this is just the starting point. Tests 
for l integration, user acceptance, and other processes can be layered on from 
there. Make sure that all APIs and teams make testing a default part of how 
they work–no compromises.

Security - All APIs use encryption by default. Leverage standardized 
authentication and authorization and test all APIs against the OWASP Top 10 
list of vulnerabilities, setting the baseline for security across nearly 100% of 
APIs across domains. Then add other security practices, setting a baseline for 
all teams to apply in their work.

Governance - A base seat of governance rules and policies must be in place. 
Translate governance into enablement early in the life cycle, applying rules 
and policies to shape behavior at the source control, CI/CD, and gateway 
layers of the API life cycle, helping both enforce the rules and enable teams.
 

layer, which goes beyond defining who can access what to include a Know Your 
Developer (KYD) strategy, modeled after Know Your Customer (KYC) rules. This 
fine-grained control and awareness helps the BSA operate without friction 
across 50 states with many different partners and applications. 

It is really interesting to see such a successful example of an API-first 
transformation and how it helps organizations operate more efficiently and do 
more with less. The BSA’s story is all the more compelling because its work has 
such a meaningful social impact.



224 Part 03 | Operations Chapter 18 | Improving Productivity, Quality, and Security

Runners - All tests are self-contained as collections. They are documented 
and shareable, but also executable using local and cloud runners. That allows 
tests to be manually executed by not just QA and developers, but by other 
technical or business stakeholders, helping make sure that everyone 
contributes to quality and is held accountable.

Pipelines - Testing, security, and governance are baked into the CI/CD 
pipelines that keep production moving forward, establishing a common, 
well-known regime of collection-defined testing that is baked into the API 
build process. That will prevent unwanted behavior when API operations are in 
production.

Monitoring - All testing, security, and governance is modular and reusable, 
available for manually executing using runners and baked into the CI/CD 
pipeline. It is scheduled via monitors across the regions that matter to 
consumers, helping ensure that quality is automated and executed as a regular 
part of team operations. 

Observability - Every test–including security audits and governance tests–
publishes results into the enterprise APM, ensuring that every API and the 
operations behind it are observable both individually and , collectively, across 
teams and domains. Make sure the state of enterprise quality is observable to 
leaders through dashboards and reporting. 

There is no single solution for maintaining quality across API operations. But if you make 
testing, security, and governance modular, machine-readable and executable via 
collaborative workspaces, you can more easily move towards a collective 
understanding of what quality means across teams. That understanding will then begin 
to manifest itself across the enterprise. Investment in testing elevates quality across the 
APIs behind enterprise applications and integrations, providing a more unified front and 
building trust with end users through reliability.

18.3 Shifting Left - Securing Your APIs Early
One of the common buzz phrases you hear in API security is “shifting left.“ It simply 
means you should be doing more to secure your APIs earlier in the API life cycle, rather 
than waiting until after you’ve deployed your API. If you look at the API life cycle as a 
linear left-to-right motion, shifting left equates to pushing things out earlier. Shifting left 
is essential for security, but you shouldn’t stop there–there are many other elements 
you might want to consider shifting left as well.

 



Chapter 8 | The Essential Elements of API Technology 225

Life Cycle - It can be difficult to know exactly what “shift left” means if you 
don’t have a shared definition of the API life cycle. Once you begin to nail down 
a vocabulary to describe it, shifting left becomes much more feasible.

Testing - Testing should not only occur after an API is up and running. More 
teams are finding it beneficial to begin crafting tests before an API has been 
deployed, using design-led or other earlier approaches to testing.

Security - It is feasible to move security to the earlier define and design stages 
of the life cycle. Shifting security left also helps teams develop more secure 
APIs before a security review is done.

Governance - It is not ideal to begin with governance by enforcing rules via 
the CI/CD system. Shifting governance to the define, design, and development 
stages of the API life cycle helps to deliver consistent APIs.

IDE - A developer’s integrated development environment (IDE) is a great place 
to shift testing, security, and governance left in the API life cycle, providing 
teams with CLI, extensions, and other essential enablement tools.

Reviews - Design, quality, and security reviews provide an opportunity to shift 
processes left in the API life cycle, centering reviews around API workspaces, 
then making reviews self-service, automated affairs.

Education - The API life cycle provides a significant opportunity for making 
API education more modular and snackable. In addition to shifting left, you will 
make g API and life cycle literacy available at every stage of the process.

Strategy - While you’re down in the weeds with each API at different stages of 
the life cycle, you have an opportunity to connect the dots of the tactical 
activities to where they fit into the wider domain, enterprise, or industry API 
strategy.

Shifting left is often accompanied by a “shield right” philosophy, which means that you 
have a feedback loop for handling things when they go wrong. For example, if there is a 
security breach, you have procedures for how to respond, address, and communicate 
information about the failure. 

A balanced “shift left and shield right” approach acknowledges that you need to plan 
earlier in the API life cycle to address some of the common challenges of API 
operations, but you also need to respond, evolve, iterate, and grow based upon 
successes and failures.



226 Part 03 | Operations Chapter 18 | Improving Productivity, Quality, and Security

18.4 Platform-Level Automation
It is impossible for humans to keep up with the pace of today’s API operations. That 
means organizations need to make an ever-increasing investment in automating all the 
API operations behind our web, mobile, and device applications. Luckily, there is a very 
modular, collaborative, and executable way of automating API operations across 
teams. You can provide whatever unit of automation needed to define and execute 
anything across operations that can be done through an API.

Collections - Postman collections provide a modular, portable, and 
executable unit of value that can be applied across every stop along the API 
life cycle, defining individual API requests or workflows from multiple API 
requests that can be automated.

Environments - Machine-readable environments provide a well-planned set 
of variables that define development, staging, sandbox, and production 
environments, helping standardize automation so it can be applied across 
multiple potential environments.

Runners - Collection runners allow teams to run collections. They can see 
each step run, display results, and iterate through different business 
workflows. You can automate common tasks technical or business 
stakeholders can run.

Pipelines - CI/CD pipelines allow you to automate using APIs, beginning with 
testing, security, and governance as part of deployment and integration, and 
also providing any other automation workflow that needs to be accomplished 
upon a pipeline run.

Newman - Postman Newman provides an open-source command line runner 
that can run collections locally via the CLI, but also in CI/CD and cloud 
environments. It provides an engine for API automation that can run 
collections anytime in any environment.

Monitors - Collections can be automated on a schedule, running ongoing 
workflows across regions, different environments, and other configurations. 
Collection-driven automation helps you not only monitor, but execute 
business capabilities. 

Automation is the only way we will keep up with the future. It is essential to shift 
automation left across API teams while still empowering consumers. Automation 
enables both API producers and consumers to do more with less and keep up with 
today’s fast pace of business. 



Chapter 8 | The Essential Elements of API Technology 227

All API infrastructure should have APIs. API requests can be defined as very fine-
grained or coarse-grained collections. The collections can be manually run with runners 
and scheduled via cloud monitors and CI/CD pipelines. Collections provide an 
unprecedented opportunity for defining all the knobs and levers you need to pull APIs 
forward throughout the API life cycle as executable and automatable units of value.

Every stage of the API life cycle should be automated, pushing well beyond test 
automation. The same kinds of automation you employ across the third-party APIs you 
depend on to do business, you can also apply to automating your own API operations. 
Automation is the only way we are going to be able to scale our businesses to meet the 
demands of a global digital marketplace. It allows teams to do more with fewer 
resources and focus on what they do best, automating the rest.



228 Part 03 | Operations Chapter 19 | Educating Your Teams

More teams outside of IT are working with APIs—but do they really know what they’re 
doing? Unless you teach them, the answer is probably no. Without knowledge of sound 
practices for API design, production, and delivery, teams will throttle efficiency and 
impede API product quality. This chapter will show you how to provide them the 
thorough, ongoing training they need to do their best work.

19.1 Keeping Up with Training 
If you want your teams to produce and consume APIs effectively, providing ongoing 
education is essential. You should offer as much in-person and virtual training as you 
can. Start by showing your teams how to document API operations, then teach them 
how to include guardrails and make operations as repeatable as possible to achieve 
maximum efficiency. Make sure your training covers all aspects of API operations, and 
keep it going to stay current as technology changes. 

Workspaces - The foundation for any enterprise begins with example and 
starter workspaces. They demonstrate the most desirable approach to 
designing, developing, and operating APIs. They don’t just tellg teams, but 
show them the ideal state, imprinting their memory with good models.

19
Educating Your Teams



Chapter 8 | The Essential Elements of API Technology 229

Repositories - Education about the API life cycle will have to be layered on top 
of your existing software development lifecycle. You can leverage repositories, 
README, and other common elements to introduce learning opportunities.

Documentation - The documentation available for each API allows you to 
educate consumers and other stakeholders, providing concise descriptions of 
what APIs are capable of doing.

Guidelines - Publish guidelines for all aspects of API operations, helping 
define the API life cycle. And don’t forget to describe the details, tooling, and 
other resources available for each individual stop along the life cycle, making 
sure everything teams are expected to do is included.

Blueprints - Stabilize common practices, distilling processes into simple 
blueprints to outline essential concepts teams will need to be successful. 
Establish a common vocabulary and set of practices across teams.

Workshops - Conduct virtual and in-person workshops whenever possible, 
providing training for every part of API operations. Derive your curriculum from 
your wider API strategy, equipping different job roles with what they need to 
contribute to operations.

Ongoing education is vital for keeping teams up with the ever-changing technology 
landscape. It also ensures that new team members gain access to the enterprise 
knowledge they need.

Provide education across every stage of the API life cycle. Workspace overviews, 
repository READMEs, and documentation are the best places to start. This organic 
approach makes everything a learning moment, that requires everyone to be both a 
teacher and student.



230 Part 03 | Operations Chapter 19 | Educating Your Teams

EXPERT PERSPECTIVE

Education as an ongoing part of  
API operations

API operations are about 25% technology, 25% 
business, and 50% people. That means 
education and training is a constant concern for 
leadership. After all, employees come and go, 
and unless you provide continuing education, 
you will soon be right back where you started. In 
talking with Sophie Rutard, former Head of APIs 

at Euler Hermes, I learned how critical educating teams is for the company as it 
strives to transform the insurance industry using APIs.

Euler Hermes is the   world’s leading provider of trade credit insurance, which 
ensures that business invoices are paid. Euler Hermes produces APIs that 
seamlessly integrate trade credit insurance into any business workflow or 
application. The company depends on the regular flow of API products to meet 
the needs of its partners, so it’s critical for teams to know at all times how to 
design the API products needed. 

To keep employees equipped to define, design, and deliver the consistent APIs 
that support the business, Euler Hermes employs a mix of approaches to 
educating teams.

First, the company has its most mature teams to define best practices and 
provide guidelines and rules for API design and governance. Then, architects 
and the governance group began identifying and working with teams who aren’t 
proficient in defining, designing, and delivering consistent APIs. The centralized 
governance groups at Euler Hermes provide webinars and training to teach 
good API design practices, but they also make API education a regular part of 
the API life cycle. To incentivize teams to design better APIs, the governance 
group avoids policing guidelines at the CI/CD pipeline and instead, educates 
teams during design time and as part of design reviews. That has helped 
reduce friction for teams of all skill levels.

Euler Hermes provides a compelling example of how to make education a 
natural part of the API life cycle. The company provides training where teams 
are building their APIs, and also makes it part of the interactions teams have 

Sophie Rutard



Chapter 8 | The Essential Elements of API Technology 231

with centralized architecture and governance groups in design reviews. This 
approach to API education is useful for any enterprise, but in heavily regulated 
industries, it’s critical. With industry regulation baked into API design and 
delivery and sustained across the API life cycle, every team is equipped to do 
the right thing as they work.

It is common for enterprises to deliver API education before building APIs, then 
check to see whether teams are doing the right thing when the APIs are 
deployed via CI/CD pipelines. But as Euler Hermes shows, by far the best 
approach is to spread API education and awareness throughout the life cycle.



232 Part 03 | Operations Chapter 20 | Regulations and Privacy

Data privacy regulations are spreading like wildfire across the globe, and with each new 
incarnation they become stricter and more complex to integrate. But there’s some very 
good news for companies that are ahead in their API-first transformation—for them, 
managing even highly detailed regulations like GDPR will be a snap. This chapter shows 
you why.

20.1 Compliance Regulations
Over the past decade, authorities have applied regulations to APIs for banking, 
healthcare, and other industries. Rules like GDPR and the California Consumer Privacy 
Act are shaping the way we do business on the web and mobile devices. It’s essential to 
keep up with laws as they evolve, and APIs provide an excellent way of doing that. As 
regulations continue to proliferate, they will be a top priority for enterprises in the years 
to come.

Privacy - APIs are defining the way businesses respond to emerging privacy 
regulations. Companies further along in their API-first transformation are 
finding it easier to comply because they have a map of the data landscape and 
can quickly access and delete any data in question.

20 
Regulations and Privacy



Chapter 8 | The Essential Elements of API Technology 233

Interoperability - Standardized APIs for industries like finance and healthcare 
are leading the conversation about government-regulated interoperability. 
This is just the tip of the iceberg. Legislation is working its way through 
governments to target additional industries for regulation.

Automation - APIs are automating the notification and reporting of 
regulations.Government agencies are publishing APIs of compliance rules and 
allowing businesses to submit required data using APIs. This opens up a new 
realm of automated regulation and deregulation that can keep up with the 
pace of business today.

APIs are defining the enterprise digital landscape–and the way government agencies 
will regulate it. They are using the same approach enterprises use to understand and 
regulate businesses in coming years. Though there are other areas in which regulation 
and policy-making are shaping how we do or APIs (or decide not to do them), privacy, 
interoperability, and automation are the top three areas of compliance regulations 
defining how we do business with APIs.

Your API-first transformation shapes how you see regulations
The state of your API-first transformation will define your experience with existing and 
future API regulation. If you do not have your API infrastructure well-defined and 
mapped out, it will be very difficult to respond to privacy rules and shift your operations 
to be automated and interoperable in response to regulations. 

Of course, your enterprise shouldn’t be doing APIs solely to comply with legal 
requirements. You should be doing them to better achieve your business objectives, 
which in turn will make regulatory compliance much easier. For example, you can deliver 
and manage APIs in regions around the world to bring resources, capabilities, and 
experiences closer to your customers, while also complying with regional regulations. 
You can map out all the schema you use across your operations to optimize how teams 
deliver digital resources–which in turn will allow you to quickly identify PII, PHI, and 
other sensitive data you will need to manage for regulatory compliance.

If you are further along in your API-first transformation, you will have a better 
understanding of how API and schema standards can help you reduce cost and improve 
business agility by being interoperable. All three of the areas of regulation covered in 
this book reflect practices enterprises already use to do business. Facilitating privacy, 
interoperability, and automation are things you should be doing already. Once you 
encounter regulatory obstacles, they become much easier to navigate and respond to if 
your API muscles are in place.



234 Part 03 | Operations Chapter 20 | Regulations and Privacy

EXPERT PERSPECTIVE

Product management to bridge 
business, technology, and compliance

The enterprise divide between IT and business 
groups has a long history. It has been common 
for business groups to throw requirements for 
applications or integrations with API features 
over the wall to IT for development. IT then 
cranks out some code and throws it back over 
the wall to be used by business groups and 

partners. In my Breaking Changes conversations, I am always looking for 
interesting stories about how this divide is bridged. and I was pleased to find a 
good example in talking with Antwain Daniels, Vice President of Product 
Management at Wells Fargo. 

Antwain prides himself on being a bridge between business and technical 
groups. He perpetually works to create alignment not only between businesses 
and developers, but also among partners, regulators , and other stakeholders 
impacted by the bank’s technology. Antwain reflects a new wave of product 
managers who have relationships with business teams and developers, 
understand the needs of partners, and critically, understand the importance of 
bringing compliance teams along for the ride. Collaborating with business 
stakeholders isn’t something developers typically enjoy, but their work is much 
harder when they try to understand industry regulatory and compliance 
requirements on their own. 

Antwain has the knowledge, expertise, and personality to connect the dots 
across overlapping parts of the enterprise and act as a human feedback loop. 
He believes it’s a product manager’s job to create, translate, cultivate, and 
aggregate feedback from business, developers, compliance, partners, and 
consumers–then distill all of that into the best requirements possible to help 
move products forward. To do this, the project manager must know all the 
details across all stakeholders and reduce any obstacles or friction along the 
way so that the organization can deliver the most useful digital products 
possible.

Though Antwain modestly says there are plenty of people like him out there, 
that’s unfortunately not what I’m seeing when I talk with enterprise leaders. In 

Antwain Daniels



Chapter 8 | The Essential Elements of API Technology 235

20.2 Privacy
When your business runs on APIs, and your APIs are defined as contracts, you know 
where all of your PII, PCI, and PHI data is located. Modern privacy regulation focuses on 
giving consumers access and control over their personal information. APIs are how 
these privacy controls are defined and fulfilled.

Privacy rules
There are two major sets of rules changing how we do business online. One comes from 
the European Union and the other from the state of California. Both are having an 
impact beyond their borders.

GDPR - The General Data Protection Regulation is a privacy and security rule. 
Though it was drafted and passed by the European Union (EU), it imposes 
obligations on organizations anywhere if they target or collect data related to 
people in the EU. The law gives consumers more control over their personal 
information and limits companies’ ability to collect, store, and sell it.

CCPA - The California Consumer Privacy Act of 2018 (CCPA) gives consumers 
more control over the personal information businesses collect about them. 
CCPA regulations also provide guidance on how to implement the law. CCPA 
reflects the precedent set by GDPR, and like GDPR, it has been influencing 
policy around the globe, including other privacy regulations in the United 
States.

fact, product managers’ inattention to the API life cycle–from setting APIs in 
motion to collecting feedback and creating common ground rules-–is the 
greatest deficiency I see across enterprise API teams. Without an API-first 
product manager like Antwain, teams are more likely to be out of alignment with 
the business, out of compliance with regulations, and very likely unable to 
deliver the features consumers are looking for in applications.

By bringing teams together, Antwain feels companies can eventually close the 
divide between business and developer groups, healing a rift that has plagued 
enterprises for years and bringing alignment and forward motion to the parts of 
operations that matter most.



236 Part 03 | Operations Chapter 20 | Regulations and Privacy

Types of data to consider
There are two types of data at the center of privacy regulation. These types of 
information have the largest impact on how companies manage the personal details of 
users across operations.

Personal Identifiable Information (PII) - PII law covers any information 
pertaining to the identity of an individual, whether the data is directly provided 
or can o be reasonably inferred by indirect means.

Payment Card Industry (PCI) - The Payment Card Industry Data Security 
Standard is an information security standard for organizations that handle 
major credit cards. 

The role of API contracts
API contracts define and shape your API operations, but they can also help you 
understand and manage privacy across your operations and help you follow GDPR, 
CCPA, and other rules.

JSON Schema - This specification allows you to define all the digital objects 
you use across APIs and the applications they provide. It gives you the 
vocabulary for defining the objects that possess PHI, PII, and other sensitive 
data.

OpenAPI - This specification uses JSON Schema to define objects, then 
provides a machine-readable access map of your digital resources, including 
all of your synchronous APIs in use across enterprise operations.

AsyncAPI - This specification uses JSON Schema to define objects, then 
provides a machine-readable map of the various events that occur across 
operations and their asynchronous APIs behind them. 

New regulations have set a precedent allowing r end users the right to access their  
data from any platform. APIs are how users will access their data and allow third-party 
developers to access it as well. APIs are essential to internet privacy and will continue 
to play a role in privacy regulations around the globe.



Chapter 8 | The Essential Elements of API Technology 237

EXPERT PERSPECTIVE

Know where your PII is by  
being API-first

Messaging provider Twilio, an API-first 
company, is a poster child for doing APIs well. 
The company has set the bar for producing APIs 
that don’t just meet the needs of developers, 
but make it simple for them to put APIs to work 
in applications. Talking with Peter Shafton, 
former Vice President of Architecture and 

Research at Twilio, it didn’t surprise me to learn that the company’s API-first 
approach to platform management set it up for easy implementation of evolving 
privacy regulations. 

Twilio works with SMS and telephony, so it already operates in a heavily 
regulated industry in the U.S. But due to the scope of business the company 
does in Europe, the introduction of GDPR became a top priority. f To help Twilio 
make sense of this new regulation, Peter was sent to Europe to attend GDPR 
workshops. In the early days of GDPR, few were sure what the impact of the 
ruling would be. Twilio made it Peter’s job to understand the requirements and 
determine Twilio’s response. 

At the workshop, another company was asked how they would respond to a 
GDPR privacy request. The company representative said they would have to 
look through over 80 databases in a number of different groups to understand 
exactly where a user PII might exist, adding that the effort would take a 
significant amount of time and might not be successful. When Twilio was asked 
the same question, Peter said the company would simply make a series of API 
requests across several locations known to contain PII. When you are API-first, 
as Twilio is, you know where all your data lives. You can easily identify PII 
properties and you know how to query, access, and delete or archive them, 
satisfying regulatory privacy requests quickly without contacting multiple 
parties.

GDPR in the EU and CCPA in California represent a significant slice of the global 
economy. There will be two types of companies responding to these 
regulations. The first group will be unsure how many databases containing PII it 
has and will have a great deal of trouble finding them and implementing the 

Peter Shafton



238 Part 03 | Operations Chapter 20 | Regulations and Privacy

rules. The second group–companies like Twilio–will be able to quickly make a 
series of API requests to satisfy regulatory privacy requests. Which scheme 
sounds more appealing to you?

Privacy regulation is likely to become stricter, raising the API stakes along the 
way. If you are further along in your API-first transformation, you will view 
privacy regulation as a natural part of doing business, rather than a set of costly 
roadblocks.That’s because being API-first elevates user privacy and security 
with or without privacy regulation. It simply makes good business sense. 



239Chapter 21 | Interoperability and Automation

API-enabled interoperability and automation go hand-in-hand. Only by using both can 
enterprises, industries, and regulatory authorities keep up with the fast pace of today’s 
markets. This chapter will show you a few of the ways you can use these capabilities to 
your advantage.

21.1 The Benefits of Interoperability
Regulation often aims to stabilize an industry and improve the flow of information. How? 
By driving interoperability among businesses in a particular industry–or among 
companies doing business with the government. APIs also reduce operating costs for 
businesses and incentivize a reusable, plug-and-play approach to delivering and 
operating software.

Portals - One important aspect of industry interoperability is having familiarity 
with the portal landing pages consumers use to onboard with APIs.

Workspaces - As we’ve stressed previously, it’s important to provide a single 
location where people can find not just APIs and documentation, but visibility 
into the mocking, testing, monitoring, and other elements of APIs.

21 
Interoperability and 
Automation



240 Part 03 | Operations

Documentation - You need to publish consistent, up-to-date, interactive, and 
simple documentation to inform consumers across many different providers. 

Onboarding - The onboarding process across many different APIs plays an 
important role in ensuring interoperability not only of the technical interface, 
but the human interface. 

Contracts - Contracts provide a common approach for defining technical 
details about the relationship between API producers and consumers across 
many disparate providers.

Standards - To further stabilize the experience across APIs, define the 
interoperability standards used in their design, development, and operation.

Testing - Make portable, documented, and executable contract tests 
available, ensuring that any stakeholder can validate whether an API is 
compliant.

Certification - Offer a formal certification program for API providers, applying 
industry standards for API certification.

Change - The constant change and evolution of APIs should be part of your 
plan.Establish a formal approach to versioning, communicating change, and 
updating the roadmap.

Policies - Establish common policies to shape identity and access 
management, source control, CI/CD, gateways, APMs, and other parts of 
enterprise API operations.

The business imperative for interoperability is becoming clear. It doesn’t just assist with 
regulatory compliance, but brings you the agility and flexibility you need to compete 
aggressively in areas that matter the most to markets. You should never compete by 
offering proprietary interfaces to your digital resources, capabilities, and experiences. 
Instead, compete by offering unique experiences, while perpetually innovating and 
responding to markets. Interoperability will help you do this.

Providing interoperability across your increasingly sprawling enterprise landscape, as 
well as across the growing number of partners you depend on, should be the natural 
state of your enterprise. You shouldn’t choose to adopt industry API and schema 
standards because the government tells you to, but to benefit your own business by 
lowering the overhead for onboarding new partners, teams, and digital opportunities  
as they emerge. 



241Chapter 21 | Interoperability and Automation

EXPERT PERSPECTIVE

Standardized APIs required to do 
business with the government

The European Union’s regulations for the 
payments industry–PSD2, and now PSD3 –have 
dominated conversations about API regulation 
for the last five years. Now, in addition to this 
financial industry specification, a new 
specification for healthcare has evolved: the 
Fast Healthcare Interoperability Resources 

(FHIR). On Breaking Changes, I sat down with Kelly Taylor, former Director of 
Digital Services for the State of Colorado, to learn about the impact this API 
specification l is having on healthcare interoperability at the state and federal 
levels.

Kelly began this journey at the federal level, pushing the specification forward 
as part of the Blue Button API at the Centers for Medicare & Medicaid Services 
(CMS). FHIR later became the interoperability standard for accessing the 
healthcare records of the 6.2 million people receiving Medicare or Medicaid.  
In 2021, CMS and the Department of Health and Human Services (HHS) began 
issuing a series of rules that essentially told healthcare providers that if they 
wanted to do business with CMS, they would need to have a FHIR-compliant 
API to ensure interoperability. This set of healthcare rules was not only the first 
set of healthcare API regulations, it became a precedent for API regulation 
across industries in the U.S.

I have been working with Kelly since his time at CMS, but for this Breaking 
Changes episode, I was most interested in the impact of the CMS regulation at 
the state level–specifically in Colorado. Kelly shared that the state government 
and healthcare providers were working together to determine how compliance 
would work. They soon realized there was a lot more required of APIs than just 
adhering to a common standard. In addition to securely managing patient 
healthcare information, healthcare providers needed to understand how to 
publish documentation, provide onboarding for consumers, and support the 
needs of developers who would be putting FHIR-compliant APIs to work in 
applications and system-to-system integrations.

Kelly Taylor



242 Part 03 | Operations

21.2 Keeping Up with Automation
As regulation increases, the need to automate notification, reporting, and evolution of 
policies and rules will increasingly be done via APIs. We see regulators not just requiring 
APIs and API standards as part of regulation, but making APIs available as part of the 
regulatory process itself.

Policies - Businesses are increasingly learning about their regulatory 
obligations via web and mobile applications, and APIs can provide self-service 
access to regulatory policies and rules. w APIs also make the policy 
notification process event-driven and closer to real-time, keeping pace with 
modern digital markets.

Reporting - APIs are already becoming commonplace for automating 
regulatory reporting. Their low-cost web technology helps the government 
keep up with the pace of industry change and the growth and scale of 
enterprises, bringing more observability to industry regulation.

Responses - Automation is creating an API-driven feedback loop that can 
inform future decisions about regulation or deregulation. By leveraging an 
API-first approach, authorities can find the optimal regulatory balance for 
specific industries, ensuring that rules are a force for positive market change 
and do not harm businesses unnecessarily.

API automation is the only way t enterprises can keep up in today’s markets. It is also 
the only way for governments and industries to regulate markets and ensure an optimal 
regulatory balance. 

The CMS API rules are still being rolled out, and the federal agency has relaxed 
some requirements in light of the Covid pandemic, so there isn’t much data yet 
on how states are faring with compliance. Still this healthcare API regulation 
provides an intriguing glimpse of r how future API regulation might look across 
other industries. As federal and state governments and public and private 
healthcare providers work together to make sense of API regulation, the rest of 
us can tune in to learn about the positives and negatives of this approach to 
mandating interoperability and common standards.



243Chapter 21 | Interoperability and Automation

To comply with incoming API rules, we must rely on API automation to be notified, 
report, and respond to regulations of any shape and size. Only then can the dance 
between government and the industries it regulates proceed at the scale necessary to 
keep up with today’s pace of business. A couple of examples: In the U.S., you can visit 
the Regulations.gov API to learn about regulatory policy. You can submit workspace 
safety compliance reports through the Occupational Safety and Health Administration 
(OSHA) portal. API automation is both how governments will regulate industries and 
how industries will respond to regulation–making regulation a natural part of the API 
economy.

Powering de-regulation with APIs
So far we have discussed the role of APIs in industry regulation, but they can also play a 
part in deregulation. By helping authorities understand the impact of their rules, APIs 
may identify areas where getting out of the way would be helpful.

Regulation is needed to strike the right balance in markets, and APIs are increasingly 
becoming a natural part of how markets work. In addition to seeing API-first 
transformation at the enterprise level, we are now beginning to see it at the industry 
level. Transformation at this scale is exactly what we need to move markets into the 
digital age.



244 Part 03 | Operations Your API Operations: The 30,000-Foot View

The blueprints and narratives we just explored in this operational section should give 
you a robust set of building blocks for retooling your enterprise factory floor and supply 
chain to support your digital transformation. Your physical office and factory floor is 
easy to define, but your digital office and factory floor is more abstract. It will take a 
significant amount of work for you to “see” it, and even more work to establish a shared 
understanding across your organization and with partners and external stakeholders. 
The goal of this book is to provide you with a solid foundation for bringing your API 
factory and digital supply chain into focus across your teams.

You are doubtlessly already producing and consuming APIs–you just aren’t doing it at 
the operational level. You and haven’t yet stitched together the industrial-grade 
platform you will need to build the future. You have source control, CI/CD, gateway, and 
APM solutions in place. Now you need to make the life cycle across all of your APIs more 
visible, tangible, and discoverable–by using workspaces. This will become the base of 
your digital factory floor, which you can use to organize your teams by domain and 
organize your digital resources, capabilities, and experiences across private, team, 
partner, and public workspaces. All of this work will bring order and consistency across 
the API life cycle, for both producers and consumers.

 
Your API Operations:  
The 30,000-Foot View



245

Once you have established a base foundation for your API operations– with hundreds or 
thousands of workspaces available to manage all of the APIs you produce and 
consume–you can get to work optimizing and automating your API operations by using 
APIs. You see, your workspaces, APIs, documentation, mock servers, testing, 
environments, and monitors all have APIs behind them.That allows you to define, 
automate, and orchestrate across your entire organization. Automating the API lifecycle 
is the only way you can keep up with the pace of business today. The problem is, you 
can’t automate anything unless it is well-defined. Having a consistent definition of the 
API life cycle is fast becoming essential for growing and scaling your operations. 

So take the blueprints and supporting elements from this section and use them to get 
started. Begin by identifying the elements you already have in place, then pick one or 
two additional capabilities to invest in. Keep going until you have made your operations 
visible and shareable across teams, providing a common awareness of how APIs can be 
produced, consumed, and evolved over time. With that shared understanding, business 
and technology leaders will gain a much better grasp of enterprise operations, enabling 
them to steer the business in the right direction in a time of accelerating change. 



246 Part 03 | Operations Closing Thoughts

Describing today’s complex API landscape is no easy task. My goal with this book was 
to give you three doors for approaching it: the strategic, the technological, and the 
operational, with accompanying blueprints and stories from enterprise leaders to help 
you get your bearings and plot your own course to a successful API-first 
transformation.

I wish I could join you for every step in your API journey. I truly do. The best part of my 
job is the conversations I have with Postman customers and guests on Breaking 
Changes. Because I learn so much from these discussions, I try to spend 50% of my 
week talking with enterprise representatives. They have helped me more than any book 
or codebase could ever do to understand in depth the realities of doing APIs at scale.

The book has been through several iterations and has become a living document for me 
and my team. And the process isn’t over yet—not by any means.

At any point along your journey, I invite you to email me or participate in the Github 
repository and workspaces we are using to power this ongoing work forward. Your 
feedback is very important—and we may be able to offer additional insights that didn’t 
make it into the book. You can be sure we will incorporate your responses and 
observations to make the next version even better.

Closing Thoughts



247

We want to get it right because APIs—and the applications and automations they 
enable—are the most important pieces of technology in the world today. APIs represent 
the relationship between producers and consumers, the intersection of business and 
technology, and the ability of governments to translate policy into action. They are the 
building blocks we will use to create innovations, and the manuals that will help us make 
sense of all the fast-moving changes around us.

I hope this book has helped you see the big picture more clearly and incorporate the 
tools that matter most to your organization. Our collective journey has only just begun.  
I am eager to learn about your personal journey as you make your way through the API 
ecosystem. So dive in—and please share your experience.



©Postman, Inc.          

The API-First Transformation
API-first companies create innovative products and build them much 
faster than those starting from scratch. This book gives business and 
technology leaders all the blueprints and building blocks they need to 
achieve their own API-first transformation—accompanied by inspiring 
stories from 30 top-brand executives to light the way.


